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ChaRter 1. 1NTRODUCTIOV

Section 4. Overview

In this paper, we develop a method for assessment of

utility functions for multiple criteria. Suppose that there

is a multidimensional outcome variable, which we shall call

6, and a set of acts on which the outcome variable _

depends. In the decision-making procedure, we shall want to

choose among the acts when the value of 6 is uncertain. In

the Bayesian approach to decision making, the problem has

two components: a probability function over the variable D

for each possible act, in this case a multivariate

distribution; and a utility function over i for each person.

The Bayes rule is to select the act with the highest expec-

ted utility with respect to the probability function.

The form of the probability function has been

extensively discussed in the literature and does not receive

primary attention in this paper. It is, however, relevant

to some degree in that, because of considerations of sim-

plicity in the computation of expected utilities, the form

of the probability distribution may constrain the form of
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the derived utility function to the class of conjugate

distributions (Novick and Lindley, 1978). It has also been

shown (Novick, 1980) that in the multiattribute situation,

the relationship between the joint utility and the marginal

utilities depends on the (conditional) probability function.

Thus the family of conjugate distributions is convenient

here as well. With adequate computer-assisted numerical

analysis techniques, however, nonconjugate functional forms

can easily be used.

The form of the utility function also has received much

attention in the literature. The primary references are

provided as they are relevant in the presentation of the

background material in succeeding sections of this chapter

and in succeeding chapters.

The emphasis in this paper is on the form of the

utility function. While there has been much research

concerning the form of such a function, the results have

been insufficiently general for many applications. Much of

the discussion has been limited to a unidimensional

attribute (e.g., Friedman and Savage, 1948; Mosteller and

Nogee, 1951; Pratt, Raiffa, and Schlaiffer, 1965; Keeney and

Raiffa, 1976; Novick and Lindley, 1979). Many of the

applications of decision theory, particularly in education,

however, involve paradigms in which the variable of interest
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is multidimensional.

The literature that is concerned with multiattributed

decision problems is also limited to some degree (Green and

Wind, 1973; Keeney and Raiffa, 1976). Most of the research

has assumed special forms of the utility function such as an

additive or a multiplicative function of the components, or

other nearly as restrictive assumptions. While these forms

may be appropriate and useful under certain conditions (and

these conditions have been well specified), there are many

situations in which the necessary conditions fail.

Additional research (Fishburn, 1973b) has provided an alter-

native formulation of the multiplicative utility function,

involving sums and products of the marginal functions, yet

still imposes conditions that place undesirable constraints

on the form of the utility function. For example, in Fish-

burn's formulation, conditional utility functions (those

holding the levels of all but one factor fixed) are strictly

linear.

This paper proposes a procedure for the assessment of a

multiattribute utility function with a less restrictive

functional form. The proposed procedure has three phases:

the elicitation phase, in which data are collected; the

coherence phase, in which the data and intermediate model

estimates of utility are checked for consistency; and the



modelling phase, in which the parameters of the proposed

model for the utilities are estimated.

The basis of the elicitation phase is the work by

Novick and Lindley (1979) on the assessment of utilities for

a single attribute. The work of these authors is also used

in the coherence phase. The coherence phase incorporates

ideas from the field of scaling, particularly mul-

tidimensional scaling, as well. For the modelling phase,

work from the field of conjoint measurement, as well as from

multidimensional scaling, is explored. The theories of con-

ditional expected utility are used to create a marginal and

conditional structure for the multiattritute utility func-

tion. Finally, the marginal and conditional utility func-

tions are modelled by cumulative distribution functions.

Section 2. The Elicitation Phase

Utilities cannot, in general, be assessed directly; we

perceive them only through their impact on decisions.

Behavioral data, from which the utilities may be inferred,

must be collected. In any procedure to determine utilities,

one can distinquish between a data collection phase and an

estimation phase. It is this collection of data that we

shall call the elicitation phase. Although the choice of
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estimation proccdure is not independent of the choice of the

elicitation procedure, in that the method of estimation

depends on the type of data that is collected, and although

the two phases may be interleaved in an iterative fashion,

the two procedures may be construed as distinct phases of

the overall procedure.

Much of the research in the determination of utilities

does not make the distinction between the elicitation and

estimation phases clearly. In fact, scme of the advocated

procedures are simply called "utility assessment

procedures," combining the data collection phase and the

parameter estimation phase as one topic (e.g., Novick and

Lindley, 1979; Humphreys and Wisuhda, 1979). In a

unidimensional utility assessment procedure, this blurring

of the component phases is not very serious, because of the

simplicity of the procedure. In a multidimensional utility

assessment procedure, however, this blurring causes conceF-

tual difficulties because of the greater complexity of the

multidimensional procedure. In addition, the modularization

adds flexibility in the construction cf an appropriate

procedure for a given application.

Even in the unidimensional case one may distinquish

among elicitation techniques, each of which is appropriate

for a given estimation technique, and among estimation tech-
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niques, each of which is applicable to the same type of data

and elicitation technique. The various utility assessment

procedures of Novick, et alia (Novick and Lindley, 1979;

Novick, Chuang, and DeKeyrel, 1979; Novick, Hamer, Libby,

Chen, and Woodworth, 1980; Novick, Turner, and Novick,

1981), the Standard Least Squares procedure, the Regional

coherence procedure, and the Local Coherence procedure,

indicate this flexibility.

This paper does not investigate the various elicitation

techniques. The purpose of this paper is to assume the

elicitation techniques as developed by Ncvick, et alia, for

the unidimensional case and extend it to a multidimensional

setting.

In Chapter II of this paper, the Novick and Lindley

procedure is discussed in detail. The chapter begins with a

brief background discussion of the von Neumann and Mor-

genstern axiomatization of utility (von Neumann and Mor-

genstern, 1947) and the notion of expected utility (Savage,

1954). The assessment procedure of Novick and Lindley is

based on these two concepts.

Following this introduction is a general discussion of

the procedure, called the fixed-state utility assessment.

Briefly, the procedure is based on the concept of greatest

expected utility, that individuals choose an act or outcome,
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among several, having the highest expected utility. Thus,

to determine utilities for a variable o an individual is

presented with a choice between one outcome, say 'j, for

sure and a gamble involving two other outcomes, say C. and
1

0k ' The outcomes are selected such that &. is not preferred

to 6 which is not preferred to 6

It can be shown that there exists a probability p such

that the individual will have no preference for either the

for-sure outcome or the gamble over the other. This

probability is called the "indifference probability," since

the individual is indifferent between the two choices.

Following this is a general discussicn contrasting the

fixed-state utility assessment procedure to an alternative

procedure, called fixed-probability utility assessment. In

one paradigm of this procedure, the individual is presented

with a choice between a for-sure outcome and a gamble

involving two other outcomes. The probability of the gamble

is fixed, however, as are the two outcomes involved in the

gamble, and the individual is asked to specify the outcome

of the for-sure alternative. This is then called the

"certainty equivalent," since it is a certain outcome that

has the same expected utility as the gamble. A review of

the literature that criticizes both these procedures is also

presented.



Following these discussions is a detailed presentation

of the least-squares estimation procedure advocated by

Novick and Lindley and implemented in the Computer-Assisted

Data Analysis (CADA) Monitor (Isaacs and Novick, 1978;

Novick, Hamer, Libby, Chen, and Woodworth, 1980).

Criticisms of the 1978 implementation by this author are

presented, which led to the enhanced, 1980 implementation.

Additional enhancements are suggested in this chapter as

well.

Section 3. The Coherence Phase

Just as the procedure to assess utilities may be decom-

posed into an elicitation phase and an estimation phase, so

may the estimation phase be decomposed into a coherence

phase and a modelling phase. In the coherence phase, the

data and the intermediate estimates of the utilities from

the modelling phase are checked for consistency. The

responses from the user may appear to be reasonable at face

value, but they may imply relationships among the attributes

that are unacceptable. There are two concepts of coherence

that are explored in this paper. One is from the work of

Novick and Lindley and is discussed in Chapter II. The

other is related to the field of scaling. Both concepts of

L -- _ .-
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coherence depend upon the assumptions that the decision

maker is willing to accept about the data.

The Novick-Lindley concept of coherence (Novick and

Lindley, 1979; Novick, Chuang, and DeKeyrel, 1979; Novick,

Turner, and Novick, 1981) involves judgments by the decision

maker. Implications of the data and the selected models are

presented and the decision maker must judge whether the

implications are acceptable. If they are not, additional

information must be elicited to resolve the incoherence. in

the paradigm of a single decision maker used by Novick and

Lindley, the decicion maker is asked to reconsider some of

the original judgments (i.e., the data). Alternatively,

gathering more data may be more practical, particularly in a

problem involving many sources of the data. This latter

approach is often taken in classical statistics, for exam-

ple, in discriminant function analysis with cross-validation

studies.

In scaling, one is concerned about coherent judgment as

well. It is assumed that the scale of measurement as obser-

ved may not be the scale of measurement with which decisions

should be made. For example, in our decision, we might like

to assume that equal intervals have equal meaning everywhere

along the scale. we might be unwilling to make this assump-

tion about our elicited data. Therefore, the elicited data
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are transformed so that they may be manipulated by the

operations of arithmetic in the modelling phase. The level

of measurement of the elicited data may not be strong enough

to allow the usual operations of arithmetic to be meaning-

ful. The theory of measurement has defined four categories:

nominal, ordinal, interval, and ratio (Stevens, 1946;

Coombs, 1950; Coombs, 1951; Siegel, 1956a; Siegel, 1956b).

If the data collected form a nominal scale of

measurement, i.e., form a classification only, the average

of two data values has no sensible interpretation. There is

no sense of order between data values, much less the sense

of distance that is necessary to interprete the idea of an

average. The only relation that is defined for a nominal

scale of measurement is equivalence. Either an object is in

the same equivalence class as another or it is not.

In an ordinal level of measurement, not only is there a

sense of equivalence, but there is an ordering relation as

well. The ordering relation may be conceived as "greater

than", "preferred to", "lower than", "lighter than", et

cetera. There is no sense of distance. One can say that an

object is "preferred to" another, but one cannot say by how

much. This level of measurement merely ranks the objects by

some property. Any monotone transformation of the scale

provides an equivalent scale.



11

With an interval level of measurement, the zero point

and the unit of measurement are arbitrary, but constant.

Intervals between objects are known and the ratio of any two

intervals does not depend on the unit of measurement or the

zero point. Any linear transformation of the data results

in an equivalent scale.

In a ratio level of measurement, the scale has all the

proFerties of an interval scale plus a defined zero point.

This implies that the ratio of any twc values has a meaning-

ful interpretation; one can judge that one object is twice

another. Any transformation that leaves the ratio of two

values constant defines an equivalent scale. Thus, the unit

of measurement is arbitraLy.

Many of the advocated utility assessment procedures

ignore this distinction or omit the scaling entirely. For

example, in the Novick and Lindley fixed-state utility

assessment procedure, it can be shown that the indifference

probabilities are assumed to be from a ratio level, or

scale, of measurement (Edwards, 1965). This is due to the

probabilistic interpretation and the estimation procedure.

This is a strong assumption to make, particularly if the

procedure is used by those who are unfamiliar with the gam-

bling context of the Novick and Lindley procedure or the

notion of probability.
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This assumption may be relaxed to some extent. To this

end, two alternatives are available. One i. to use a

different data collection procedure in which the natural

level of measurement is less restrictive (e.g., interval or

ordinal, instead of ratio). This alternative has been used

with success (Kruskal, 1965; Green and Wind, 1973). The

other is to assume a less restrictive level of measurement

for the indifference probabilities and to apply a scaling

transformation to obtain the ratio level of measurement

required by the estimation procedure.

To provide the necessary background material for the

scaling, the literature of multidimensional scaling is

reviewed in Chapter III (Eckart and G. Young, 1936; G. Young

and Householder, 1938; Torgerson, 1952; Kruskal, 1964;

Shepard, 1966; Guttman, 1968; Carroll and Chang, 1970; F. W.

Young, de Leeuw, and Takane, 1976a) . The history of mul-

tidimensional scaling is traced from Eckart and G. Young

through the theories of data and modelling of F. W. Young,

et alia.

Following this, the theory of data of F. W. Young is

presented in detail. The theory is based cn two concepts:

level of measurement and process of measurement. The level

of measurement is concerned with comparisons between

categories of objects. The different levels are nominal,
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ordinal, interval, and ratio. These levels have been

discussed above. The process of measurement is coiicerned

with comparisons within categories. The two processes of

measurement are discrete and continuous. In a discrete

process of measurement, all objects in the same category are

assumed to have the same value on the scalE. If two objects

have different values, they are in different categories. In

a continuous process of measurement, the categories are

defined by intervals of values, and all objects having

values in a given interval belong to the same category.

The utility assessment procedure of Novick and Lindley

includes some scaling of the elicited data. These authors

argue that equal intervals, in the elicited data, near the

middle of the scale and near the tails of the scale are not

equally meaningful (Novick and Lindley, 1979). Therefore,

they suggest using the logodds transformation to balance the

differences. This may be viewed as a fixed, non-parametric

scaling transformation.

The main purpose of reviewing this literature is to

show the similiarities between the research in scaling and

in utility assessment.



14l

Section 4. The Modelling Phase

Once we have scaled the data that we have collected, we

must proceed to the stage of estimating the utilities. We

do this by proposing a model relating the utilities to the

data and estimating the parameters of the model by some

means such as the method of least squares. Much of the mul-

tidimensional scaling literature is useful in investigating

the modelling phase; thus, this part of the utility assess-

ment procedure is discussed in Chapter III as well.

In the literature on utility estimation, however, most

of the modelling is discussed in terms of conjoint

measurement. Background material for conjoint measurement

is presented in Chapter IV. Two axiomatizations are discus-

sed (Luce and Tukey, 1964; Poskies, 1965). Several

applications conforming to these axiomatizations are

presented (Fishburn undated; Keeney and Raiffa, 1976;

Kruskal, 1965; Green and Wind, 1973; Humphreys and Wisuhda,

1979). These applications depend upon certain independence

conditions that simplify the form of the utility function.

One of these conditions is called "additive inderen-

dence" (Keeney and Raiffa, 1976). This condition holds if

and only if preferences among gamtles depend only on the

marginal probability distributions of the gambles. When the
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condition holds, the utility function is additive in the

components.

Another of these conditions is call "mutual utility

independence" (Keeney and Raiffa, 1976). Under this con-

dition, preferences among gambles involving each attribute

do not depend on the levels of the other attributes. If

this condition is satisfied, then the utility function is

multilinear; i.e., it is the sum of uniattribute utility

functions and cross-products of uniattribute utility func-

tions.

The points to be made here are that the conditions may

not be satisfied and that the resulting functional

limitations may not be appropriate. We must be careful to

investigate the validity of the conditions and the meaning-

fulness of the functional forms. It is likely that an

additive utility function is not reasonable in most

situations. A multilinear utility function is also

unreasonable in many situations. In both cases, for exam-

ple, the conditional utility functions, those of one

attribute for fixed values of the others, are linear. While

these simplifications are useful under the correct con-

ditions, they are not generally applicable. Methods for

estimating more general multiattribute utility functions

must be developed.
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Two general theories of conjoint measurement are

presented (Tversky, 1967a; F. W. Ycung, 1972). These two

theories of polynomial conjoint measurement provide the

theoretical foundation for a more general approach to the

estimation of multiattribute utility functions. The

approach taken in Chapter V of this paper is based on the

operational approach of F. W. Young, et alia (de Leeuw, F.

W. Young, and Takane, 1976; F. W. Young, de Leeuw, and

Takane, 1976a; Takane, F. W. Young, and de Leeuw, 1977; F.

W. Young, Takane, and de Leeuw, 1978).

Section 5. An Intermediate Proposal

In Chapter V, the various pieces are put together to

form one possible procedure for multiattribute utility

assessment using theories from conjoint measurement and mul-

tidimensional scaling. The indifference probability assess-

ment procedure is expanded to involve gambles among several

attributes. The scaling transformations are developed for

several assumed levels of measurement. A polynomial model

is proposed that should be more flexible than the additive

or the multiplicative model.

Briefly, the multiattribute utility assessment

procedure consists of the three phases outlined in the
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previous three sections: an elicitation Fhase; a coherence

phase; and a modelling phase.

In the elicitation phase, choices between one mul-

tidimensional outcome for sure and a gamble involving two

other multidimensional outcomes are presented. These

choices are used to order the outcomes as well as to elicit

the indifference probabilities for the choices. Note that

if one choice is selected, either the fcr-sure outcome or

the gamble, regardless of the probability of the gamble

(i.e., even when the indifference probability is 0 or 1),

then we know that the utility of the fcr-sure outcome is not

between the utilities of the outcomes in the gamble. We can

then reorder the outcomes and present a new choice.

The number of possible choices is quite large. If

there are d dimensions and N, is the number of points selec-

ted along the ith dimension, then there are (N,*. .. *Nd

choose 3) possible choices. For example, if there are three

dimensions and seven points along Each, then there are

6,666,891 possible choices. By comparison, if there is only

one dimension and seven points along it, there are only 35

possible choices.

It is not practical to obtain indifference

probabilities for every possible choice, nor is it neces-

sary. If there are three dimensions and seven points along
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each, then there are twenty-one marginal utility parameters,

ignoring for the moment the scaling parameters. Recalling

that two parameters are fixed, at 0 and 1, for each utility

marginal function along its dimension, we have only fifteen

parameters to estimate.

We could accomplish the same structuring using the

usual unidimensional utility assessment procedures. If we

again assume that we are interested in a situation with

three dimensions and seven outcomes along each dimension, we

have 341 utility parameters to estimate (7*7*7-2=341). This

approach makes no assumptions about the structure of the

model. The savings in parameter estimation using the

polynomial model advocated in this chapter are considerable.

The selection of the choices must be made carefully.

One could randomly select multidimensional outcomes for the

choices, but this method would likely be confusing for the

user. Perhaps, the choices could be selected in a pattern,

conditional on certain "lines" through the space of the

outcomes. For example, one set of choices could involve

points along a single dimension, conditional on fixed values

for the other dimensions. Another set of choices could

involve points along a "diagonal" through two or more

dimensions of outcomes, holding the values of other

dimensions fixed.
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The second phase, coherence, and the third phase,

modelling, would be iterative. An initial scaling trans-

formation, an identity transformation, would be applied to

the elicited data. The parameters of the model would then

be estimated from this transformed data. Using the

estimated parameters of the model, predicted data would be

calculated. A new scaling transformation would then be

estimated using the predicted data and the original data.

This iteration would continue until convergence criteria are

satisfied.

Within the third phase, there might be some

subiteration. The proposed model might be such that the

parameters cannot be estimated simultaneously with ease. F.

W. Young, et alia, have shown that the method of alternat-

ing least squares works well. With this method, blocks of

parameters are estimated conditionally on fixed values fcr

the other parameters. These estimates are then taken to be

fixed and another block of parameters is estimated.

The model proposed in this chapter is a fourth-order

polynomial. The terms could be determined dynamically: if

a term accounts for at least a certain percentage of the

total variation in the data, then it is included in the

model. Note that the parameters of the model are not only

the coefficients of the terms in the model. Since this is a



20

fixed-point procedure, the utilities along each of the

dimensions are parameters as well. Any interpolation of

utilities between specified outcome points is risky, but

useful. To facilitate this interpolation, transformations

from the attribute space to the marginal utility spaces are

also estimated by fourth-order polynomials.

It should also be noted that the above presentation has

tacitly implied that the number of dimensions for utilities

is the same as the number of dimensions for attributes.

This is not a necessary restriction. Multidimensional scal-

ing is commonly used as a dimension-reducing technique. It

also commonly assumes that the dimensicn of the object space

is the number of outcomes. We could apply the techniques

presented in this paper to a set of outcomes that appear to

be unidimensional on the surface, but are composed of

several underlying dimensions. The procedure could then be

used to estimate utilities on these underlying dimensions.

The procedure could also be used in reverse. Suppose

that we measure outcomes along several dimensions, but that

some of the dimensions are redundant. We could use the

techniques presented here to identify the utility space of

lower dimension.
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Section 6. Conditional Expected Utility Assessment

The procedure developed in Chapter V has some

deficiencies in conceptualization and in parsimony. Thus

the theories of conditional expected utility (Luce and

Krantz, 1971; Fishburn, 1973c) are explored as an alter-

native structure for the multiattribute utility function in

Chapter VI. The axiom systems of Luce and Krantz (1971) and

of Fishburn (1973c) are briefly presented to provide the

theoretical background for the proposed assessment

procedure.

Drawing on the two axiom systems, the concepts of a

marginal utility function and a conditional utility function

are developed. The marginal utility function is defined as

the conditional expectation of the multiattribute utility

function. The conditional utility functicn is defined as a

rescaled utility function over a subset of the space of

interest. It is shown that the conditional utility function

plays an integral part in the assessment procedure of Novick

and Lindley (1979).
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Section 7. Multiattribute Utility Assessment

Based on the theoretical background of Chapter VI, an

assessment procedure for the marginal and conditional

utility functions is adopted from that of Novick and Lind-

ley. Models for the utility functions are chosen to be

cumulative distribution functions, as suggested by Novick

and Lindley (1978). By selecting convenient cumulative

distribution functions, such that the marginal and con-

ditional distributions are nicely related to the parent

distribution, the parameters of the overall multiattribute

(parent) utility function may be estimated. The normal

distribution and the Dirichlet distribution are convenient

candidates. A new distribution, developed for this applica-

tion and called the multivariate generalized beta

distribution, is also used.

The procedure will be implemented into the Computer-

Assisted Data Analysis (CADA) Monitor (Novick, Hamer, Libby,

Chen, and Woodworth, 1980). It will be limited to two-

dimensional problems because of computer memory restric-

tions. For the same reason, the scaling transformations of

the coherence phase will be limited to fixed, non-parametric

forms. Three forms will be available: an identity trans-

formation, so that the parameters of the utility model are

estimated in the metric of the indiffercnce probabilities;

III II - ., , -- .. .
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the logodds transformation, as used by Novick and Lindley

(1979) and currently implemented in the CADA Monitor; and

the arcsine-sguare-root transformation, because of its

accepted use in educational and psychological research

(Novick and Jackson, 1974).
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Chater II. UT1k11 PLIgCTATION

Section 1. Introduction

In this paper, we are primarily concerned with the

assessment of utilities for an individual. The data consist

of repeated measures elicited from that individual. By

contrast, if we are estimating utilities for a group, then

the source of error of primary concern is across

individuals. In the former case, we want to elicit a large

enough sample from the individual so that the errors of

measurement are reduced. In the latter case, we generally

want to sample sufficiently many individuals to accomplish

the same reduction in the error of measurement. In both

cases, we want a large enough sample of measurements to

achieve stability of the estimates.

When we are assessing utilities for a group, we use the

frequency of preference of one object over another to

measure the relationship of the two objects (Shepard, Bom-

ney, and Nerlove, 1972; Green and Wind, 1973) We use the

relative frequency of preferences both to determine the

ordinal characteristics (i.e., which has greater utility)



25

and to scale the objects in terms of distances (i.e., how

much greater utility the one has compared to the other). If

one object is preferred over another by a large majority of

the sample and a third over a fourth by a small majority of

the sample, one would say that the two objects of the first

pair were more "distant" from each other than the two

objects of the second pair. The strength of the interval

relationship is determined by the proportion of the sample

that prefers the one object over the other.

When we are assessing utilities for individuals, we do

not have the same type of information from which to draw

inferences. We have a sample of one, using the same

context. We must use the sample of res~cnses from that one

individual to estimate the utilities, but the responses must

be of a different nature than a simple statement of

preference between two objects. Such an elicitation would

be rather transparent, since the individual would likely

remember the preference stated for previous presentations of

the pair of objects, and thus would not provide as much

information to us for our efforts as it might appear. The

strongest statement we could make from such evidence would

concern only the ordinal characteristics of the utilities,

and that would not be very strongly suppcrted.

In order to obtain more information, there are several
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feasible alternatives. One alternative is to present two

pairs of objects and to elicit which pair is thought to be

further apart (Suppes and Winet, 1955; Hayekawa, 1980).

This comparison on an interval scale is appealing as we are

are attempting to assess interval-scaled utilities.

Another alternative is to elicit a statement about the

magnitude of the interval between two objects. This

procedure might be difficult, and thus unreliable, because

of the lack of a standard for comparison. To structure this

procedure a bit, we might consider three objects, instead of

two, and ask how much further the third is from the first

than the second is from the first.

This latter procedure captures in essence one

interpretation of an elicitation procedure based on the

theory of expected utilities (von Neumann and Norgenstern,

1947; Savage, 1954). The next section presents the

axionatizations of utility by von Neumann and Morgenstern

and by Savage. In the third section, two classes of

procedures based on the theory of expected utility are

investigated: fixed-probability utility assessment and

fixed-state utility assessment. In the fourth section of

the chapter, the fixed-state procedure advocated by Novick

and Lindley (1979) is discussed in detail. In the final

section, some enhancements for the Novick-Lindley procedure
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are presented.

Section 2. Expected Utility Axiomatizations

In this section, two axiomatizaticns of expected

utility are presented. The axioms of Von Neumann and Mor-

genstern (1947) are listed in Table 11.2.1. Those of Savage

(1954) are listed in Table 11.2.2. These axiomatizations

are presented here for completeness and are not discussed in

detail.

The axiomatization of von Neumann and Morgenstern was

the first concerted axiom system for the concept of expected

utility. The concepts may be traced back to the works of

Ramsey (1960) and de Finetti (1974) . The axiom system of

Savage generalizes the system of von Neumann and Morgenstern

somewhat and presents it in a more rigorcus fashion.

Section 3. Expected-Utility Assessment Procedures

In this section we present two classes of procedures

based on the theory of expected utility. The procedures in

one class are called fixed-state procedures, and those in

the other class are called fixed-probatility procedures.
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Table II.2.1

Axiomatization of Utility

(von Neumann and Morgenstern 1947)

We consider a system U of utilities u, v, w, .... In U a

relation is given, u > v, and for any number a, (O<a<1), an

operation

au + (1-a)v = w.

These concepts satisfy the following axioms:

A u > v is a complete ordering of U.

A:a For any two u, v, one and only one of the three follow-

ing relations holds:

u = v, u > V, U < V.

A:b u > v, v > v imply u > w.

B Ordering and combining

B:a u < v implies that u < au + (1-a)v

B:b u > v implies that u > au + (1-a)v

B:c u < w < v implies the existence of an a with

au + (1-a)v < w.
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Iabl 21.2.1

(continued)

E3:d u > v > v implies the existence of an a with

aux + (1-a)v > w.

C Algebra of combining

C:a aux + (1-a)v =(1-a)v + aux

C:b a (b u + (1- b) v) + (1- a) v ci u +1-c) v wh e re c a ab.
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Table 11.2.2

Axiomatization of Utility

(Savage 1954)

In the following postulates (P1-P6), let S be the

universal event, a set of states containing all the states

of the world, with generic element s; let A and B be events,

subsets of S; let f, f', g, g', denote consequences; let 6,

• be acts, functions that attach a specific

consequence f(s), f' (s) , g (s) , g' (s), respectively, to each

state of the world s; and let A" 9A ' B denote acts

conditioned on the event A, or P, obtaining.

P1 The relation <= is a simple ordering among acts.

P2 if 6 gj, and are such that:

1. in "B, agrees with 9, and ' agrees with 9',

2. in B, agrees with 6', and 9 agrees with f',

3. <= ,

then 61' <= g'

P3 If = g, :' g', and B is not null; then <= ,,'

given B, if and only if g <= g'.
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Table 11.2.2

(continued)

P4 If f, f' , g'; A, B; 6A' ' -A" B are such that:

fi < , g' = g;

2a. f (s) = i, gA(S) = g, for s in A
A A

f (s) = f' gA (s) = 91 for s not in A;
A A

2b. fB (s) =f, 9 (s) = y, for s in B

f (s = f', (s) = g', for s not in B;

3. < =

then A < =

PS There is at least one pair of consequences f, f' such

that f' < f.

P6 If o < ;', and f is any consequence; then there exists a

partition of S such that, if or , is modified on any

one element of the partition as to take the value f at

every s there, the other values being undisturbed, then

the modified remains less than i9, or ., remains less

than the modified 9, as the case may require.
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These two classes have been well researched and criticized

(Friedman and Savage, 1948; Mosteller and Nogee, 1951;

Coombs, 1975; Kahnemann and Tversky, 1979; NCvick and Lind-

ley, 1979; Novick, Turner, and Novick, 1981). The

criticisms are discussed here in order to justify the selec-

tion of the fixed-state procedure of Novick and Lindley as

the method for elicitation in this paper.

The two classes of procedures are based on the theory

of expected utility. Both assume that there are three

distinct outcomes or objects, which are ordered according to

perceived value or utility. Two alternatives are presented:

the object of middle value may be selected for sure, or a

gamble may be selected involving the other two objects. If

the for-sure alternative were selected, then the object of

middle value would be obtained unconditionally, in this

hypothetical choice. If the gamble were selected, the

object of higher utility would be obtained with probability

p and the object with lower utility would be obtained with

probability 1-p. For certain objects and probabilities, the

expected utilities of the two alternatives would be egual.

In the fixed-probability procedures, the value of the

probability p is fixed, and the value of cne of the three

objects is varied until the utility of the for-sure alter-

native is equal to the expected utility of the gamble. In
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some cases it is the object of middle value, the for-sure

object, that is varied; in some cases it is the higher-

valued object that is varied. The middle-valued object is

called the "certainty equivalent" of the gamble.

In the fixed-state procedures, the three object are

fixed and the value of the Frobability that makes the expec-

ted utilities of the for-sure alternative and the gamble

alternative equal is ascertained. This probability is cal-

led the "indifference probability," a:d, oue would Le

indifferent to a choice between the for-sure alternative and

the gamble with such a probability.

The two classes of procedures may be compared on

several levels. One is concerned with coherence in judgment

(Novick and Lindley, 1979). if we elicit subjective judg-

ments on related quantities, we want them to agree. In

eliciting judgments in the assessment of utilities, we want

to elicit more judgments than are necessary to estimate the

unknown utility parameters. Thus, the assessee ha:; an

opportunity to see the effects of incoherent judgment.

The ease of coherence checking is not equal between the

fixed-state and the fixed-probability Frccedures (Novick and

L indley, 1979) . For exam ple, in the fixed-probability

procedure, fixing the prolhability at one half, we might find

the certainty equivalent of an even-odds gamble betwee n th

La



34

worst state, say t0 f and the best state, say uI. Calling

this state 05 and assuming :he utility of 0 to be 0 and.5 0

the utility of 01 to be 1 (i.e., u(O)=O and u(ul)=1), we

would set u(e.5 )=-.5. We could then elicit the certainty

equivalents for even-odds gambles between e and and

between J., and 6i" As these certainty equivalents would

have utilities .25 and .75, respectively, we might call them

0 .25 and 0.75. If we were to then elicit the certainty

equivalent for an even-odds gamble between . and F , it
".25 ~.75F

would be rather obvious that it should be . Hence, we

would not be getting observations that were independent

enough to check for coherence.

The fixed-state procedures seem to not be affected as

much by this difficulty in coherence checking. In the next

section, several algorithms that have been developed for

this purpose are discussed.

One criticism that appears to affect procedures from

both classes stems from an "anchoring and adjustment"

phenomenon (Tversky and Kahnemann, 1974). It is

hypothesized that the first response acts as an "anchor" and

subsequent responses are adjustments from the initial

response. In addition, it appears that in both the fixed-

state and the fixed-probability procedures, e!;timates of thoq

extremes tond to b con:.,rvative. Mor0 rewich o oe~ nj

i
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conducted in this area (Novick, Turner, and Novick, 1981).

Section 4. The Movick and Lindley Procedure

The procedure advocated by Novick and Lindley (1979) is

a fixed-state procedure. In this section we present the

procedure in detail. The implementation of the procedure

(Isaacs and Novick, 1978) and its subsequent enhancement

(Novick, Hamer, Libby, Chen, and Woodworth, 1980) are also

discussed. In the following section, additional

enhancements are suggested. Although much of the discussion

of the implementation of the procedure is concerned with

modelling and estimation, rather than elicitation, it is

included here for reasons of continuity and completeness.

The Novick and Lindley fixed-state utility assessment

procedure is based on the theory of Expected utility in the

following way. It assumes that we have a set _ of n+1

states in which we are interested; we will name these states

O" 1~ • "''', .It assumes that we can order these states

such that 0 <p , <p ... <p 0. where "<p" is interpreted

as "less preferred than." Note that the preference ordering

is dsSumed to be strict; it is not permitted that two states

are equally preferred, or that one is indifferent in a

choice between two states. (This dssumption i:, for
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explanatory convenience. Any implementation of the

procedure should be able to determine when two states are

preferentially equivalent and to adjust the model accor-

dingly. This topic is discussed in more detail in Chapter

VII when the procedure being advocated in this papor is

presented.)

We will have occasion to discuss varicus states selec-

ted from the set 0. We will use 0i, 6j, and Ok to denote

any three states of the set such that ei <p 0 <p t'k' We

will use j+1 to mean the state that is preferred to V but

is preferred to no other state that is preferred over j

Similarly, we use 0j_1 to denote the state to which 0j is

preferred but is preferred over all other states over which

is also preferred.] /

The Novick-Lindley procedure presents a sequence of

choices involving three states,8 i ,0i , and Ok . In each of

these hypothetical situations, the decision maker is given a

choice between obtaining state 0 for sure or participating

in a gamble where ok would be obtained with probability p

and -i would be obtained with probability 1-p. The purpose

of the procedure is to determine a value for p so that the

choice is indifferent to the decision maker. It is then

assumed that the expected utilities of the two alternatives

are equal. In other words, the equation
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( I.4. ) u(j) P U(Ok) + (l-p ) u( i)

is true, where u(.) is the utility transformation. Since

the indifference probability p varies depending on the

situation, i.e., on the choice of i, j, and k, we will refer

to a specific value as pijk"

It is this utility transformation that we are attempt-

ing to estimate. There are, however, some assumptions that

we make about its form. First, it is a discrete trans-

formation. We are not trying to find a parametric fit for

the set of all possible states (our set -1is a subset of

this set). We are merely attempting to find a value to

associate with each element Oi in the set :- Second, we

associate a utility of 0 with the least preferred state in -

and a utility of 1 with the most preferred state. If we are

aiming for an interval level of measurement with our utility

transformation, this second assumption only restricts us

enough to make the necessary estimates, because an interval

level of measurement is unique only up to a linear trans-

formation.

Since equation (II.4.1) involves three utilities and

the second assumption specifies two utilities in the set to

have fixed values, we can solve the system of equations in

the form of equation (11.4.1) if we can arrange each equa-

tion so that it involves two utilities that we know and only

*1
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one that we do not know. To accomplish this, it is con-

venient tc select the states ei , Oj, and ok so that they are

'adjacent,' i.e., we select jI , ui and .j+1  Equation

(11.4.1) then becomes

(11.4.2) u(6 ) = p u(e +1) + (l-p) u(ej-l).

Since the indifference probability p here depends on the

selection of j only, we will refer to a specific value as

pj. We can now rearrange equation (11.4.2) so that it

involves differences between the utilities of adjacent

states

(11.4.3) p u(Oj) + (i-p.) u(8.) = pj u(ej+ I ) + (I-pj) u(uj I )

(11.4.4) p [u(O +1) - u(.)] =  (i-p.) [u( ) - U(oj_.)]

(114.5) uo - u(9) ( il ) - u(O. 1 )I

If we define f. = (1-pj)/pj, then equation (11.4.5) becomes

(11.4.6) u(ej+ I ) - u(ej) = f.[u(ej) - u(Bj- 1 )].

Substituting equation (11.4.6) for j=j,-l into the equation

for j=j' and repeating the substitution, we arrive at

(11.4.7) u(oj+1) - u(6j) = (7 f) u(O)

since we have constrained up600 = 0. If we then sum
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equations (11.4.7) over j from 0 to k (and defining f = 1),0

we get

rk(11.4.8) U(0 k+l) r-0 ( 0 fi U(H I)

If k+1=n then

(11.4.9) u(n) = l ( fi u('.

Since we have constrained u(%n) = 1, we can calculate u( 1 )

from known quantities. Knowing u(uj), we can calculate the

utility of the other states successively using equation

(11.4.5).

This development does not use the ccncept of coherence

checking. We are assuming only as much information as is

needed to uniquely determine the utilities. To check

coherence, we need to collect more information on the

relationships among the utilities, i.e., we need to elicit

indifference probabilities for more gambles. There are

three methods that have been developed to check for

coherence: local-coherence assessment, regional-coherence

assessment, and least-squares assessment (Isaacs and Novick,

1978; Novick and Lindley, 1979; Novick, DeKeyrel, and

Chuang, 1979; Novick, Hamer, Libby, Chen, and Woodworth,

1980; Novick, Turner, and Novick, 1981).

In the regional-coherence assessment procedure, adjust-
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ment is made for pairs of situations. Indifference

probabilities are elicited for two situations in each of

which a hypothetical choice between receiving a given state

for sure and participating in a gamble is offered. Only

four states are used for each pair of situations; the two

situations have two states in common. The indifference

probabilities for these two situations imply fixed

indifference probabilities for the other two possible

situations involving three out of the same four states

(there are four unique combinations of three states chosen

from four states when order is not a consideration). The

indifference probabilities for all four situations are

adjusted until they are acceptable; then another pair of

situations is presented. When enough information has been

collected to uniquely determine the utilities, the procedure

stops.

In the local-coherence assessment procedure, adjustment

is made for each situation in which a choice is made between

a for-sure state and a gamble involving two other states.

An indifference probability is elicited. From this

information, two gambles are constructed, each involving two

of the three states, such that a choice between the two gam-

bles should be indifferent. If one of the gambles is

preferred, the probability of one of the gambles is

modified, thus changing the indifference probability in the
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original choice, so that neither gamble is preferred over

the other. Once all the probabilities are acceptable,

another set of three states is presented in the same way.

When enough sets have been presented so that all the

utilities can be uniquely determined, the iteration stops.

The least-squares assessment procedure allows adjust-

ment only after all situations have been presented. For

this reason, the procedure might be called a global-

coherence assessment procedure as well. Indifference

probabilities are elicited for each situation presented, as

in the other assessment procedures, but more situations are

presented than are necessary to uniquely determine the

utilities. Therefore, it is unlikely that there is a solu-

tion that exactly fits all of the equations in expected

utility. To estimate the utilities, a least-squares solu-

tion is calculated.

In the least-squares methodology, we assume that our

observations, in this case the indifference probabilities

pj, contain some (unknown) amount of error, which may be

random or systematic. Thus, the estimated model is not

expected to fit the observations exactly. The parameters in

the model are estimated to minimize the squared deviations

of the observations from the corresponding values projected

by the model.
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Because of the importance to the estimation of the

model, it is necessary to consider carefully the metric in

which to make the comparison between the observations and

the estimated model. One possible metric is that of the

indifference probabilities themselves. Equation (11.4.1)

can be rearranged to give

(11.4.10) Pijk u(k) -

from which we can obtain estimates of the indifference

probabilities conditional on the estimates of the utilities

u(0 ) - u(O )(I1.4.11) p.~ - u )-__(_ )
9ijk u(.)k i

One could, then, estimate the utilities to minimize the sum

of squared differences between Pijk and fijk"

Novick and Lindley (1979) have argued that the

precision of the logodds of the indifference probabilities

is the crucial factor in the analysis. Note that equation

(11.4.1) can also be rearranged to produce

pij u(r .) - u ei

(11.4.12) k

I-D U

ac pijk estkates

and the corresponding estimates I
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(11.4.13) . . . ...
ijk u ) - U(J

The least-squares solution advocated by Novick and Lindley

is, thus, the set of utilities that minimizes the equatioi

-2

(11.4.14) - L\o ijk' - lcA ) - u )
It Ilk 10'ijk ki

Research has shown (Mayekawa, 1981) that use of the logodds

metric does not appreciably improve the estimation over the

use of the metric of the indifference prcbabilities or the

arcsine metric.

Section 5. Enhancements to the Procedure

There are two enhancements noted here for the original

implementation of the Novick and Lindley least-squares

fixed-state utility assessment procedure (Isaacs and Novick,

1978). Although they are more relevant to the implementa-

tion of the procedure being advocated in this paper, they

are mentioned here for continuity.

The first enhancement is concerned with the numerical

method used in the nonlinear estimation. The method is a

Newton-Raphson method (Dahlguist, Bjork, and Anderson, 1974;

Kennedy and Gentle, 1980) such that
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(11.5.1) u - u l

where u is a previous estimate of the utilities, u' is the

new estimate of the utilities, is a vector of first

derivatives of the function to be minimized (equation

.l4.14), and H is the inverse of the matrix of second

derivatives (the Hessian matrix) of the function to be

minimized. All derivatives are with respect to the utility

parameters. Table 11.5.1 presents thEse first and second

derivatives.

The original implementation of the Novick-Lindley

procedure did not use the full expressions for the calcula-

tion of the Hessian matrix of second derivatives. In each

of the sums for the second derivatives in Table II.5.1, cnly

the first term within the brackets was used. The justifict-

tion was based on the expectation that the difference

between the two log terms would be sufficiently close to

zero to make its contribution to the second term within tht

brackets negligible.

The first enhancement is to use the full expression for

the second derivatives. It appears that this enhancement

lessens the likelihood of obtaining utility estimates that

are not monotonic. (The constraints imposed by the model

theoretically juarantee that the utility estimates will be

monotonic. With computatiouial inaccuracies due to the
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limited precision of the computing environment, however, the

theoretical constraints are not sufficient, especially when

the utilities of two states are very close.) This

enhancement has been implemented in the 1980 release of the

CADA Monitor (Novick, Hamer, Libby, Chen, and Woodworth,

1980). Other intricacies of the algcrithm are discussed

later.

The second enhancement is concerned with the algorithm

used to calculate initial estimates fcr the utilities.

Since the estimation algorithm is an iterative improvement

algorithm, it requires a starting point. The current

implementation of the Novick-Lindley procedure requires that

all the adjacent gambles be used to calculate the initial

estimates. Although it may be that the adjacent gamLles are

easiest and most accurate to elicit (Ncvick, Turner, and

Novick, 1981) and therefore would always be available, this

restriction is unnecessary. All that is required is a set

of non-linearly-related gambles involving all the states.

While the numerical analysis needed to check the conditions

is more complicated than the currently implemented scheme,

the increase in flexibility for the decisicn maker more than

offsets this disadvantage. (The initial utility e;stimates

are calculated in the metric of the indifferenc,

In the CA[A on itot.
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ChA21K III. UfLTIDIMENSIONAL SCALING

Section 1. Introduction

In this chapter, we will present the backgrcun

material needed for the development of one approach to the

utility asses;ment procedure that is the gcdl or this paper.

To this purpo:;e, the chapter is divided into four sections,

including this one.

Section 2 presents a brief history of multidimensional

scaling. The works of Hotelling (1933), concerning the

principal components decomposition, cf hckart and G. Young

(1936), concerning the approximation of a matrix by another

of lower rank, and of G. Younj and *Householder (193o),

concerning the representation of a set of points in terms of

their mutual distances, stand as the foundation upon which

accomplishments in the field of multidimensional scalinj aLe

built. Torgerson (1952) developed these ideas into .i theciy

and method of mu1tidime nsional scaling, noti ii that th(

dimensions in psychological, as opposed to psychophysical,

scaling are often unknown or confounded.
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Kruskal and Shepard (Kruskal, 1964; Shepard and

Kruskal, 1964; Shepard, 1966) expanded the concepts

developed by Torgerson to include nonmetric stimuli (i.e.,

ordinal) as well as metric stimuli. The analysis of group

scaling was developed by Bloxom (1968), Carroll and Chang

(1970), and Schonemann (1972). This has been called the

"individual differences" model. In this paradigm, it is

assumed that data have been collected from several sources

(e.g., individuals) that have a common underlying structure

but different perceptions of that structure. The

differences in perception may include heterogeneous weight-

ing of the component axes or heterogeneous rotations of the

axes.

Much of the current work in multidimensional scaling is

being done by F. W. Young, et alia (de Leeuw and

Pruzansky, 1976; de Leeuw, Young, and Takane, 1976; Takane,

Young, and de Leeuw, 1977; Young, 1975; Young, de Leeuw, and

Takane, 1976a; Young, de Leeuw, and Takane, 1976b; young,

Takane, and de Leeuw, 1978). A comprehensive theory of data

and modelling has been developed that includes both metric

and nonmetric scaling, and the many common models in mul-

tidimensional scaling such as the additive model, the

regression model, the individual differences model, and the

principal components model.
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Section 3 presents the theory of data and modelling of

F. W. Young, et alia. The theory of data is structured

using the level of measurement (nominal, crdinal, interval,

and ratio) and the process of measurement (discrete and

continuous). This theory of data forms the basis for the

scaling phase of the algorithm presented by F. W. Young,

et alia, called Alternating Least Squares with Optimal Scal-

ing (ALSOS) . As the multiattribute utility assessment

procedure presented in this paper uses this algorithm as a

base structure, the ALSOS algorithm is discussed in detail.

In Section 4, various topics in multiattribute utility

assessment that use the language and structure of mul-

tidimensional scaling are presented. Mcst of these

applications use the additive model (e.g., Green and Wind,

1973; Kruskal, 1965). Some use of the individual

differences model has also been made (Green and Wind, 1973).

Section 2. The History of Multidimensional Scaling

One of the initial attempts to view a matrix as a

projection from some set of axes different from the apparent

axes of the observed measurements is due to liotelling

(1933). In his paper, Hotelling shows that one can

construct a set of axes such that each axis represents the
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dimension of largest variation in the observed values that

is orthogonal to the other axes.

Hotelling's paper, and results due tc Courant and Hil-

bert (Eckart and G. Young, 1936), were used by Eckart and

G. Young (1936) to determine the closest approximation to a

given matrix so that the approximation is of lower rank.

The solution is based on two results by Courant and Hilbert.

The first states that any real matrix may be decomposed:

For any real matrix A, two orthogcnal matrices V
and Ji can oe found so that L = VAU' is a real
diagonil m;,trix dith no negative elements.

This theorem shows that a decomposition of a real matrix

exists. The second theorem, also due to Courant and Hil-

bert, shows the conditions under which a matrix of lower

rank that closely approximates a given matrix may be found:

If AB' and B'A are both symmetric matrices, then
and only then can two orthogonal matrices V and U
be found such that L = VAU' and M = VEU' are both
real diagonal matrices.

The solution to the problem of finding an approximation to a

matrix that has a lower rank, say r, is to decompose the

matrix as indicated in the first theorem and use the first r

rows and columns of the resulting decomposition and the

second theorem to construct the approximating matrix.

Another basic result is the representation of a set of

points in Euclidean space in terms of their mutual distances

(G. Young and Householder, 1938). In this paper, it is
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shown that under certain conditions, a set of numbers may be

conceived as mutual distances of a set of points in

Euclidean space. Matrices are also found in the paper whose

ranks determine the smallest Euclidean space containing such

points. The results of Eckart and G. Young are then

applied so that the representation of the set of numbers may

be approximated by a set of points in an Euclidean space of

lower dimensionality.

These results may be applied to any set of numbers that

may be interpreted as measurements of distances among a set

of objects. The implications of these results were expres-

sed by Torgerson (1952) as follows:

The traditional methods of psychophysical scaling
presupposes knowledge of the dimensions of the
area being investigated. The methods require
judgments along a particular defined dimension,
i.e., A is brighter, twice as loud, more conser-
vative, or heavier than B. The observer, of
course, must know what the experimenter means by
brightness, loudness, etc. In many stimulus
domains, however, the dimensions themselves, or
even the number of relevant dimensions, are not
know . What might appear intuitively to he a
single dimension may in fact be a complex of
several. Some of the intuitively given dimensions
may not be necessary -- it may be that they can be
accounted for by linear combinations of others.
Other dimensions of importance may be completely
overlooked. In such areas the traditional
approach is inadequate.

The results of G. Young and Householder are not directly

applicable to the type of problems ennunciated by Torgerson.

The work of the former authors presupposes infallible data.
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The data from the oft-cited real world that Torgerson wishes

to analyze are likely to be distorted by errors of

measurement.

The crucial aspect is in the measurement of the

distances between the objects. The origin of the Euclidean

space being determined is unknown. Young and Householder do

not address this issue, instead choosing cne of the objects

to represent the origin. There are, then, an infinity of

solutions, but each is a Euclidean transformation of any

solution obtained by arbitrarily selecting an origin.

When the data are fallible, this solution is no longer

reliable. Selecting different objects to represent the

origin, each with its unigue error of measurement, may lead

to qualitatively, as well as quantitatively, different

representations in Euclidean space. In particular, they are

not likely to be linear transformations of each other. A

solution to this problem, posed by Torgerson, is to choose

the centroid of the objects as the origin of the Euclidean

space.

Torgerson's work assumes, however, that the operations

of arithmetic may be validly applied to the data measured.

For this reason, the procedure is called a 'metric'

algorithm. The field of multidimensional scaling was expan-

ded to include nonmetric procedures, in particular those
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that rely on ordinal judgments about the stimuli, 1'y the use-

of a scaling transformation. The scaling tianstormation i-;

estimated as a monotone function of the judgcments, so to

preserve the ordinal characteristics of the data. The-

crucial aspect of the transformation is the estimdtion of a

true zero on the scale of measurement so that the operations

of arithmetic are valid. With the judgments converted to

distance-like, or scalar-product-like, measures, the results

of Eckart and G. Young, and G. Young and Householder, may

be applied, and a Euclidean space of low dimensionality may

be constructed that adequately represents the objects of

interest.

This extension of multidimensional scaling was

pioneered by Kruskal and Shepard (Kruskal, 1964; Shepard and

Kruskal, 1964; Shepard, 1966). An additional impoutdnt

contribution to this area is due to Guttman (Guttman, 19b ).

All of the above works presuppose d single, unified

point of view. If data are collected from several sources,

the individual information is lost, as the emphasis; is on

some type of composite. Attempts to isolate an underlying,

common point of view yet preserve some of the Individual

information led to the development of the "individual

differences" model of multidimensional scailing (Tucker and

Messick, 1963; Bloxom, 1968; Horan, 1969; Carroll and Chang,
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1970; Schonemann, 1972; Takane, F. W. Young, and de Leeuw,

1977).

As in the previous models, a set of points in a

Euclidean space of some dimension is determined using a com-

posite point of view. In addition, a set of weighting fac-

tors are estimated for each individual. These weighting

factors alter the unit of measurement alcng each of the

dimensions of the common Euclidean space according to the

importance of that dimension as perceived by the individual.

Some of the individual differences models allow reflections

of the dimensions or rotations of the axes.

An algebraic solution to the individual differences

model has been proposed (Schonemann, 1972). Although the

algebraic solution is of some theoretical significance, its

practical application is limited, again because of the

instability problems of fallible data. In the above-

mentioned paper, Schonemann states:

We do not necessarily recommend its use in
preference over presently available iterative
algorithms. Algebraic solutions sometimes have a
tendency to become unstable in the fallible case,
and it is therefore often safer to replace them in
actual applications by algorithms which have well
understood optimality properties...

The approach in this paper follows the above suggestion in

that an iterative solution, not an algebraic one, is

proposed.
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A unified theory of data has been proposed for mul-

tidimensional scaling by F. W. Young, et alia ( Young,

1975; de Leeuw, Young, and Takane, 1976; Young, de LeEuw,

and Takane, 1976a; Young, de Leeuw, and Takane, 1976b;

Takane, Young, and de Leeuw, 1977; Young, Takape, and de

Leeuw, 1978). The development of multidimensional scaling

models and algorithms had been unfocused, but the theory of

data developed by F. W. Young, at alia, sets a structure

in which the various models fit. The next section presents

this theory of data in detail.

Section 3. The ALSOS Algoritbm

Young, et alia (F. W. Young, dE LeEuw, and Takane,

1976a), have defined optimal scaling as fcllows:

Optimal scaling is a data analysis technique which
assigns numerical values to observation categories
in a way which maximizes the relation between the
observations and the data analysis model while
respecting the measurement character of the data.

Scaling techniques other than that proposed by F. W.

Young, et alia, have been used (e.g., Torgerson, lqS2;

Kruskal, 1964; Guttman, 1968) which conform to th!;

definition, but the Alternating Least Squares, with Optimal

Scaling (ALSOS) is the most coherently stated and !upjoted

by a theory of data.
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The structure of the ALSOS algorithm consists of a data

space, an optimal scaling space, a model space, and a

parameter space. The data space and the optimal scaling

space are related by an optimal scaling transformation. The

optimal scaling space can be viewed as a projection of the

data space onto a numerical space restricted by the

measurement characteristics of the data. The model space is

a least squares projection of the optimal scaling space,

subject to the restrictions imposed by the model. The model

space and the parameter space are related by a combination

rule, or formula, which defines the model.

The alternating least squares algorithm consists of

dividing all the parameters into two mutually exclusive and

exhaustive sets. One set is then taken to be fixed, and a

solution is calculated for the second set. This solution is

then taken as fixed for the second set, and a solution is

calculated for the first set. Hence the term "conditional

least squares" is used for this algorithm (de Leeuw, Young,

and Takane, 1976), as the least squares solution at each

step is conditional on fixed (possibly unstable) values of

the other parameters. This algorithm has also been called

"block relaxation" (Cea and Glowinski, 1973; de Leeuw, F.

W. Young, and Takane, 1976). The process is iterated until

convergence criteria are satisfied.
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In the optimal scaling phase of the algorithm, the

observations are viewed ds categorical and each observdtion

category is represented by a parameter. The number and the

nature of the categories, and thus the parameters, are

determined by the measurement characteri.ticL of the data.

These are discussed more fully ldter in thi. ;ection.

In the model estimation phase of the alorLithm, the

parameters of the model are divided into mutuilly exclusiv&

and exhaustive sets as well. A It tit- ua i, :,: ,lutior. iL

calculated for each set in turn, conditional on tixed values

for the other sets of parameters. The cverall algorithm

alternates between the optimal scaling phase and the model

estimation phase until convergence criteria are met.

Convergence of the ALSOS algorithm has been

demonstrated (de Leeuw, F. W. Young, and Takane, 1976; de

Leeuw, undated). It must be noted, though, that convergence

is guaranteed only to a solution, not necessarily to the

globally optimal solution. The developers of the algorithm,

however, appear to be satisfied that the globally optimal

solution is nearly always obtained (de Leeuw, F. W. Young,

and Takane, 1976).

The applicability of the algorithm to d wide range of

models is indicated by the sepaLation of the optimal :caling

phase and the model estimat ion ph (ise. in fict , F. .
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Young, et alia (F. W. Young, de Leeuw, and Takane, 1976a),

have stated:

If a least squares method is known for analyzing
quantitative data then a least squares method can
be constructed for analyzing qualitative data.

This, then, is the basis for applying multidimensional scal-

ing methods to the problem of assessing utilities in mul-

tiple dimensions. In order to support this application, a

closer look at the optimal scaling transformations and the

measurement characteristics that imply them is needed.

The optimal scaling transformation is governed by the

measurement characteristics of the data. These measurement

characteristics have been organized into a theory of data by

F. W. Young, et alia (F. W. Young, de Leeuv, and Takane,

1976a,b), described in terms of level of measurement and

process of measurement. The levels of measurement, as

described previously, are binary, nominal, ordinal, inter-

val, and ratio. The latter two levels are often combined as

numerical data. The processes of measurement are discrete

and continuous.

As mentioned above, all observations are interpreted as

categorical. This is justified in the sense that the

procedure by which observations are obtained is limited Ly

the finite precision of measurement and recording. Th*

level of measurement, then, is concerned with the
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For the discrete process of measurcment, the ortima"

scaling space for all observations within a category is

represented by one number. On the other hand, in the

continuous process of measurement, the ortjmal scalinj "pae

within a category is represented by an interval. Thus, tor
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the discrete case, observations in the data space that are

measured to be equal, or that are equally preferable, are

transformed so that the optimally-scaled values are equal

(i.e., ties must remain tied). In the continuous case,

observations that are measured to be equal need not have

equal optimally-scaled values; however, the optimally-scaled

values of all observations within a category will lie in

some interval. In both cases, observations that ad.k

measured not equal may, or may not, have optimally-scaled

values that are equal, or not equal.

F. W. Young, et alia, have related this theory of

data to other works. The discrete-ncminal case had been

previously developed by Fisher (1946). The continuous-

nominal case is handled by a two-phase method, the first a

discrete-nominal solution and the second a continuous-

ordinal solution. The ordinal cases are similar to

Kruskal's two approaches (Kruskal, 1964) . The discrete-

ordinal case is like Kruskal's secondary approach, wherea:

the continuous-ordinal case is like his primary approach.

The discrete-interval transformation is a polynomial

linear reqression (linear in the parameters) . The

ortimally- ;ca1od values are polynomial funct ion!; of th(

data. In the continuous case, the Folynomial regression is

followed by an estimation of the interval houndaries;. The
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solely of the sum of the utilities along the dimensions of

the data space. In mathematical terms, the model may be

stated as follows:

(111.4.1) u(x I ,  x 2 . .. Xn  Ul(X ) + U2(X2) . . U (n

where n is the number of dimensions, x. is a value along the.1

ith dimension, and uI (x.) is the utility at value x along1 1 1

the ith dimension.

This model has been used extensively in the literature

(e.g., Kruskal, 1965; Green and Wind, 1973; de Leeuw, F. W.

Young, and Takane, 1976; Keeney and Raiffa, 1976; Humphreys

and Wisudha, 1979). The model is analogous to the main-

effects analysis of variance, assuming that the interaction

terms are all zero. The difficulty with the model is its

assum-'ions about additivity. It presupjoses that the

utility structures along parallel lines through the data

space (e.g., parallel to the axis of one dimension) are sim-

ply translations of each other. This is a strong assumption

to make and it should be tested carefully.

A second model commonly purported is the individual

differences model (e.g., Tucker and Messick, 1963; Bloxom,

1968; Horan, 1969; Carroll and Chang, 1970; Schonemann,

1972; Green and Wind, 1973; Takane, F. W. Young, and de

Leeuw, 1977). In this model, we are Fresurposing that the
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data are collected from several, not necessarily comparable

sources and we are estimating a Euclidean subspace which

represents a common point of view. We also estimate

individual weights for the dimensions of the Euclidean space

which represent the importances of the dimensions as per-

ceived by the individuals. As a mathematical model, it can

be represented as follows:

(IIi.4.2) D X'W X1 1

where D. is a matrix of scaled data for individual i, X is a
1

matrix of coordinates in some Euclidean space for the set of

stimuli, and W. is a matrix of weights fo: individual i. In

some models, W is constrained to be diaconal so that the

model allows only differences of perception along the axes

of the common space represented by the matrix X. In other

formulations, the matrix Wi  may be a general orthogonal

matrix so that the individual differences may be manifested

as rotations of the set of axes of the common space.

For examples of the use of individual differences

models in utility assessment situations, see Green and Wind

(1973).
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Chaptr IV. CONJOINT MEASUREMENT

Section 1. Introduction

The field of conjoint measurement is concerned with the

foundations of measurement. Assuming only the existence of

sets of objects and basic relationships among them, the

existence and uniqueness of numerical scales may be

established. Several axiomatizations have been presented in

the literature that result in different structures involving

multiple dimensions.

Conjoint measurement is closely related both to mul-

tidimensional scaling and to utility estimation. It has

been claimed that multidimensional scaling is a special case

of conjoint measurement (Tversky, 1967a; F. W. Young,

1972). It can also be seen that utility estimation, in

various formulations, is a special case of conjoint

measurement (Tversky, 1967a; F. W. Young, 1972; Krantz,

Luce, Suppes, and Tversky, 1972). One of the goals of this

paper is to present utility estimation in a general formula-

tion of conjoint measurement.
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The field of conjoint measurement is also relevant to

this paper for its model formulations. The two most widely

used models for multiple-attribute utility functions, the

additive and the multiplicative models, have been

extensively investigated in the literature (Krantz, Luce,

Suppes, and Tversky, 1972; Keeney and Faiffa, 1976). The

additive model presupposes that a multiple-attribute utility

function is a (possibly weighted) sum of the single-

attribute utility functions of its components. The mul-

tiplicative model presupposes that a multiple-attribute

utility function is a product of the single-attribute

utility functions of its components.

In Section 2, the additive and multiplicative models

are discussed. An dxiomatization of measurement for each

model is briefly presented. It must be realized that other

axiomatizations leading to the same model are possible, and

that the axiomatizations selected are for illustrative

purposes and not particularly for ccmparison. Some

implementations of these two models are also referenced dnd

the disadvantages of the models are outlined.

In Section 3, two more general theories of conjoint

measurement are discussed (Tversky, 1967,1; F. W. Young,

1972). Both are concerned primarily with polynomial con-

joint measurement, i.e., the model of a multiple-attribute



66

utility function is a general polynomial function of the

utility functions of its components. The second theory,

unlike the first, is not an axiomatization, although it is

more general in that it allows more general functions for

models than polynomials. The additive and the mul-

tiplicative models are special cases cf these theories. The

utility assessment procedure of Novick and Lindley (1979) is

also related to the formulation of Young, thus establishing

the connection with a concrete example and providing the

motivation for the development that follows in the next

chapter.

Section 2. Additive and Multiplicative Models

In this section, two axiomatizaticns of conjoint

measurement are presented. The first is an axiomatization

of additive conjoint measurement (Luce and Tukey, 1964).

The second is an axiomatization of multiplicative conjoint

measurement (Roskies, 1965).

In the additive axiomatization, the Lesulting

representation of the measurement scale ot a multirlo-

attribute consequence set is a sum of mea'urement scal_- nf

thf- indivi~luafl trh t For Pxg,1 ... y t',

(1i!;joinf s t of TICrI:;#hjI rI(:.:;; 0 , , , ' t h U 0:

II I .. . ... . . ... . . ... . . . I I I I I I II . . . . . .. " ... .
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space of interest is a subset of the product space

AxBx...xK,

(IV.2.1) u(a,b,...,k) = uA(a) + Lb) .....

The axiomatizations leading to this representdtion dre

presented in Table IV.2.1. This i s the original

axiomatization; there have been several cxtcnsions that are

not presented here (Krantz, 1964; Luce, 1966a; Krantz, Luce,

Suppes, and Tversky, 1972). Some of these extensions

provide for the k-dimensional representation illustrated

above. Other extensions generalize the notation. The

characterization is essentially the same.

The key axiom to the additive representation is Axiom

3, the Cancellation Axiom. It is best illustrated in the

following three by three table :

p

A (A,P) (A,X) (A,Q)

F (F,P) (F,X) (F,Q)

B (1BP) (BX) (E,Q)

The axiom assumes that the orderings along the diagonal:;,

from the upper-left-hand corner to the lower-right-hand cor-

ner, are consistent.

This is a strong assumption to make, and it leads to a

strong representation. In the additive mode-l, the cnntLibu-
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Table IV.2.1

The Luce-Tukey Axiomatization

(Luce and Tukey 1964)

Let A be a set with typical elements A, E, C, ... , F, G, H,

... and P a set with typical elements P, Q. R, ... , X, Y,

Z; then Ax Pconsists of pairs (A,P), (A,Q), (B,Q), etc. Let

> be a binary relation on such pairs. (Thus > is equivalent

to a subset of (Ax P)x(AxP)).

(VA) Ordering Axiom (Axiom 1). > is a weak ordering, i.e.,

(VB, Reflexivity) (A,P) _ (A,P) holds for all A in A and P

in P;

(VC, Transitivity) (A,P) > (B,Q) and (E,Q) _ (C,R) imply

(AP) > (C,R);

(VD, Connectedness) Either (A,P) (E,Q) cr (BQ) > (A,P),

or both.

(VE) Definition. For A, B in A and P, Q in P, (A,P)

(B,Q) if and only if (A,P) > (B,Q) and (B,Q) _ (A,P);

(A,P) > (B,Q) if and only if (A,P) _ (BQ) and

not((B,Q) > (A,P)).

(VP) Solution (of Equations) Axiom (Axiom 2). For each A

in A and P, Q in ;', the equation (F,P) = (A,Q) has i

solution F in A, and for each A, V in A and P in

the equation (A,X) = (B,P) has a solution X in
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Table IV.2.1

(continued)

(VG) Cancellation Axiom (Axiom 3). For A, F, B in A and P,

X, Q in P, (A,X) k (F,Q) and (F,P) > (B,X) imply (A,P)

_ (B,Q).

(VIA) Characterization. A doubly infinite series of pairs

(Ai,Pi}, i=O,+l, +2, ..., with Ai in A and P in V, is

a dual standard sequence provided that

(VIB) (Am ,P n) = (A ,P q) whenever m+n=p+q for positive, zerc,

or negative integers m, n, p, and g. A dual standard

sequence is trivial if for all i either A =A0 or

Pi=PO, in which case both hold by transfer.

(VIC) Archimedean Axiom (Axiom 4). If AiP.i is a non-

trivial dual standard sequence, B is in A and Q is in

P, then there exist (positive or negative) integers n

and a such that (An,Pn) _ (,Q) _n (Am, M).

ni
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More generally, a question raised throughout the
social and behavioral sciences is whether two
independent variables contribute independently to
an overall effect or response. The usual approach
is to attach to each Fair of values of the
variables a numerical mearure of effect that
preserves the order of effects anI then to test
for independence using an additive statistical
model, probably one of the conventional analysis
of variance models. When dependence (interaction)
is shown to exist, one is uncertain whether the
dependence is real or whether another measure
would have shown a different result. Certain
familiar transformations are often applied in an
effort to reduce the danger of the second pos-
sibility, but they are unlikely to approach
exhausting the infinite family of mcnctcnic trans-
formations, so that one cannot be too sure of the
reality of an apparent interaction. Our results
show that additive independence exists provided
that our axioms are satisfied; of these, the most
essential one from a substantive point of view is
the cancellation axiom, which is also a necessary
condition for an additive representation to exist.
Thus, one could test the cancellation axiom by
examining a sufficiently voluminous body of
ordinal data directly, without introducing any
numerical measures and, thereby, test the primary
ingredient in additive independence. In some
applications this should be more convincing than
present techniques.

Comments about the adequacy of the additive representation

in general situatlon:- are presented later in this section.

Suffice it to mention here that the assumption of ddditivity

is not one lightly accepted, and one needs alternatives for

those situations when the additive representation is not

appropriate because of the violation of one or more of the
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axioms.

Closely related to the additive re [rsentation iS thk

multiplicative representation. The axiom : ot thc Fo :ki 1

system (Roskies, 1965) are listed in Table IV.2.z. There is-

a clear analogy between the Luce-Tuke y sy. tem and thri

Roskies system. Axiom:s I through 3 of each system serv.-

dnalogous purposes. Axiom 6 of the Roskiis system is stated

to be the same as Axiom 4 of the Luce-Tukey system. The

major difference are the axioms in the c-skies syf;tem to

establish the idea of zero.

The representation implied by the Rcskies axiomatiza-

tion is a multiplicative one, as follows:

(IV.2.2) -k (A : V: .) .x .. X "

Note that thi!s may be converted to an additive representa-

tion by the use of the lcg transformatlcn and the realiza-

tion that the scale-; u, u,, ... u are uniquo only up to a

positive linear transformation.

Thes v two representations, the ddditiVky model tnd the

M U t .1Jlir7a1t 1 V - D 101, I r 1( o i n t-n t i n fx f I 'IJ () (7 01 oiI I

m ea, u r m sn t a n' ill t he f ielId of ut ili t Y a: i, it

p ecf1.c . xample:; may be found in Fisht urn (19bt,) , Pol Iak

(19h7 , t; ; t-n ii;d on ( 1)7 1) , Yeeney an d .lc.erm i (1]7',)

0IenP y and b'i, ff (19 C) , aid Humphrey; and Wi1,ud]. (1'i )
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Table IV.2.2

The Roskies Axiomatization

(Roskies 1965)

Let A be a set with elements A, P, C, ... , F, G, ... and

let 11 be a set with elements P, Q, R, .. ., X, Y, .... x

consists of pairs (A,P) , (B,P) , (C,X) , etc.

Axiom 1. Ordering. Let > be a binary relation on x suc:h

that > is a weak ordering; that is, iCt all A, L ii.

and P, Q in P,

(a) (A,P) _ (A,P);

(b) if (A,P) _ (B,Q) and (F,Q) > (C,F) then (A,F) >

(C,R) ;

(c) either (AP) > (B,Q) or (B,C) > (A,P)

Definition. (A,P) (B,Q) if and oIlV if (A,P) 2 (B,Q) d n d

(B,Q) > (A,P) ; (A,P) > (B,Q) if and only it riot ( (F,i)

(A, P)

Definition. Since the rrderinvg _ is weak, it u aitit >1,, x

into equivalence classes defined by =. From now en, W4

work with the equivalence classes, which we continut to

denote by (A,P).



Tahl: V.z.2

,fi uit o. of z io. Let

- A (A ,P) (A , ) 1oi ill , I" ,

(A, P ) 0( ) Iot di] A, i T,

(AP) io thet A is in Or P is in oi both

Axiom 2. Solution *of e'uati-.ons. Let A, E he in and P,

be in If B i ; not in , thc( cExists X in such

that (A.oC) (i,X) . If P is not, in , there exists 1

in A suclh that (F,P) =PC)

Axiom 3. Cancellation. Let A, A', A'' Le in . and [, ',

P'' he i : if A' i.; not iri o if i' 1: not in

and if (A,P') (A',P'') and (A',P) (A '',i") tK4L

(A,P) (A'',P'').

Axiom~ .nin. Lt B, he not in I (,i) (A, ) II

some A not in , then (B, ')s (PJ) for all 1,ot I n

si ilarly, it A, P L( [lot in )nd it (A,P) (is,P) ci

some P :ot in , Th,! (A,) (P,<) (<r All (' L ,

where (A,P) ;(,K) if (A,B) P and ([,) > K ot in

(A,P) < 0 aind (P,Q) < 0. W hnn (A,) (A,y) , w,- wrtI-

i i; an eiuivaience relIt ion on - c- ivfin

A.B i m d L I y, and we d7tf inc -V y a.S A- ;i i- n

OBv i o :; wa y: (A, 1) -:;(B, ) ( B.n, ht t ( >

(hI ) < 6 or (A, P) < o arid (I ',,) > .
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Table !V.2.2

(continued)

Axiom 5. Let A, B he not in P , Q not in

If PsQ and (A,P) (B,p) then (A,Q) (BQ)

if P-sQ and (A,P) (8,P) then (A,Q) ((B,Q);

if AsE3 and (A,P) (A,Q) then (B, B) (P,Q);

if A-sB and (A, P) (A,Q) then (E,P) ((B,Q)

Axiom 6. The Archimedean Frcperty as defined by Axiom ~4 ct

the Luce-Tukey system holds on (jx;



amonqj others.

section 3. polynomial Conjoint MeasuremEnt

ifl thi"ri sect ic:, t wo P.j-er l t I t: i x; I- k)f c ~jui:

t ion axiomtization (Tverc- ky, 19o7a) T Thi c t " (e L

Young , 19~72) is not an axio.natizatian, 1-3 i not r.-sti cte

to polynomial ure pres e nt at ion , but lt i 2 1: t' S k- t dat io C 1

~Jtnoral tho")ry of m~i~i~ (-omi mcJ -I

The axiomoitization by Tversky i s Fra Sente( h~r tarL f )

completeness of bAckground material. The axiomatizatior 12;

no -)t i i scu sr;ed i n de(-ta il1, t;u t is m k rely rr:; 1"t(d a:

theoretical. support I " th1c- : :1 t I t 1.C., 0:1 '~i--. , t 11,

is the subject ol t 1,is papFe r T h E o' F (r b Y Y o u r,

presented to0 providep jus-tif ication for: t hk2 model 6 Pveo t t1

rni the ne-xt chaptr.

Th e iax io mnt i zit ion by 'rv t--;L y i. oA u'J I) I C tcP.

t host- by LuCe ind Tikoy -III' by V-, kii Ar TV -2.t ;tt*

r'rdo' e-1 I' to I . 0 f - it t 1 t hii ai
n ame x i t i . (a): -j 1,i I II t t I,.ii

w p 1 a I n I II it- dott I I t I tI v'' . I '-I via

Lit _ _ _ _ _ _ _ _ _ _ _ _ 1iii



polynomial measuremient model; that is, any model
whiere eachi data element is expressed a a -specified
real-valuedi, order-Fresorvinj pal yncmial function
of its components.

The first respect is important because it allows two datai

elements to be uncomnparable. In previjous axicinatizations,

i t was nect-.§;dry that for t-very two dat i elements one h~k at

;uoo .eas th' o t her 1-1- n the; ap plicatfions;

conridere1 in thlis p-er, utility asse'-sm'-n , it May 1be that,

two data elements may niot be comparable because- Of the-

ini 1 elihoodl or th- inopehniloes f cte or th(;- ot hcr

of thIe 5lituation>;- thait the- datal Tlmot 1!ser 1 h

,jkenc-ralizationi allow:-. us to ignore such a Frolemr.

The second respect provides a thEOret ical jus'tifiCation-

+lor the I evelo-of-rreasurerrent data structuring used by F.

W . Youngj, Et alia, as; presented in t he pr evious,- chapter-,

a nd ada pt ed inl th11is pape(-,r . AlIt ho ujh t he p roofs otf t he4

,:epreseita tion provided by Tversky ae nt directly

app)[licable to all the data structures described by Young, in

pa V t ic 1lIiA t 1) nonm in a 1l lvelI o f mcai:Ku r c n t , th-ey (I a) ipp1 1 y

t o most o f t ho si t ua-tiors!- , a nd th genera k-1 -EdIS t LL uctur of t C

T...eo(ry pp as to fit, in al'- cI:;e,.

Th Y, hir -~rrc irlortalnt hcaue_ oe il _If:

th.e oolvailit y avmWhich Were crLucial inl th lipp.:Vi('U.

.XiOM-At iZations5. in thei L uc-T uk (2y anld i 1, the 11('V sk I ,5,

y:tmt T)'' -sir v Ihlt th da "ta ';t ucturro( ; bedes
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enough so that solutions to equivailence relatioiis (z) ,xi:;t

in all cases. The formulations of the solvability axioms

required that the data structure be infinite. The Tvtrsky

generalization relaxes this restriction, allowing greater

flexibility in application.

The previous axiomatizations did nct directly addres.;

the question of necessity and sufficiency, and therefore

should be considered to represent sufficient conditions

only. The Tvc<y;ky theory does address this question.

The fifth respect allows less restrictive models than

the previous representations. If x = (a, ,...,k) is a data

element in AxBx. . . xK where a is in A, b is in D, ... , k is

in K; 1, m, ... , n are integers; then the representation can

be displayed as

(IV.3.1)

where the summation is over some subset cf all combinations

of 1, m, .. . , n. Formally, Tversky states:

A data structure D = < ,, >c > i- (i S ystem whe',
is a subhset of the product set AxEx ... xK of s;ome
finite number of disjoint sets A, L,, .. K, and
is part a 1 y ordered under >o. Tha t i:;, > i ' 1

binary rellation defined on which satisfies the
following conditions tor all x, y, z in :

(i) P-eflexivjty, x >0 x;
(ii) Transitivity, x >o y and y >c z imly x

>o z ;
x -o y i.; defii (Io 1!s x >o y and y >c x; x >o y .
dof I,11h(-d 'i:' X >o y 111nd not y >0 X .



A data structure D is said to satisfy a polynomial
measurement model M whenever there exists a real-
valued function f defined on D and real-valued
functions ff. f" "''" f defined on factors A, E,

K such that, for any data element

(i) I-(a,b . .. k) : M f,( ), B b . . . K )

where M is a polynomial function of its arguments,
that is, a specified combination of sums,
differences, and products of the functions f.,, fp'

(i) for all x (a,b,...,k), x'
(a',b',...,k'), x >o x' implies f (x) > f(x') and x

=o x' implies f1(x) = f (x') where >o and =o denote
the order observed in the data.

Tversky notes that the general polynomial conjoint

measurement model encompasses a wide variety of well-known

measurement models. Included as examples are Hull's and

Spence's performance models as cited in Hilgard (1956), the

Dradley-Terry-Luce choice model (Luce, 1959) , the mul-

tidimensional scaling models, and Savage's subjective exFec-

ted utility model (Savage, 1954).

Although not an axiomatization, and thus not as

strongly placed on theoretical measurement foundations, is

the generalization of conjoint measurement offered by Ycung

(F. W. Young, 1972). Young presents a general tunctiondl

form,

(iv.3.2) h ,) :hI.

where the notation x is used to dencte t he ith row of X,
I.

and X is a matrix of coordinates used to sl:.tidly Leprosent

a set of objects.
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Young then shows how various models presented in th _

literature can be represented by this j(neral functioinal

form. Included are the Euclidean and inko ski distarcE

s;caling (Kruskal, 1964; Shepard, 1966; ;uttmdn, '1 b) m , 1

tidimensional unfolding (Coombs, 1964) ana a glelz.t~cn

to minkowski metrics, monotone analysis o vaai.c.

(Kruskal, 1965) which is related to the additive conjoint

measurement model (Luce and Tukey, 1964), Folynomial con-

joint measurement (Tversky, 1967a) , non-metric factor

analysis (Sherard, 1966; Lingoes and Guttman, 19b7; Kruskal

and Shepard, 1974) , subjective expected utility (Savage,

1954) , and the i3radley-Terry-Luce choice Model (Luce, 1959)

using Tversky's theory, being applicable to numeiiical

data as well as ordinal data, it is easy to see that Younj's

iormulation applies equally well to metric factor analysi

(Libby, 1979), principle components analysis (Young, Takane,

and de Leeuw, 1978), regression analysis (Young, de Leeuw,

and Takane, 1976b) , analysis of variance (Kruskal, 1964; de

Leeuw, Young, and Takane, 1976), and analysis ot covariance

s;tructures (Libby, 1979) .

We can also formulate the model of utilities u:;ed by

Novick and Liidley (1979) using Young's theory, in the si m,.

way that Tversky and Young formulate Simila model.

Although not strictly a polynomial modEl, the mitLix of



indifference probabilities can be likened to Young's matrix

of similarities which is fitted by a function, in this case

the ratio of certain differences, of the utilities.

There are two relevant conclusicns in the paper bY

Tversky. The first is

The generality of the present thecry, however,
stems not only from the fact that most measurement
models proposed can be represented as polynomial
functions but also from the well-known result that
any continuous real-valued function cn a closed
bounded region can be uniformly approximated
arbitrazily closely by a polynomial function.

This certainly applies to the applications of interest for

this paper, namely utility assessment. The second

conclusion is

The present theory, however, does not provide any
simple set of empirically testable conditions
which can be easily interpreted as a substantive
theory. Furthermore, the general theory does not
provide any constructive procedure for obtaining
the desired numerical representation.

In fact, because of the difficulties, testable condition!;

have only been developed for simple modEls (Krantz, luck.,

Suppes, and Tversky, 1972; Fishbuin, 1973). TveLsky (l 0 fIa)

also leaves open the problem ot "thE development of

ippropriate error theories together with a statistical

analysis of the problem of JoCdness -of - f it of the data t

models."

Some of these problem-; will 1)6 addres!sed in t he next

(:haFter, IeIlat ive to A specific mod l a1| lie(d to) ti I : -



went of utilities in a multi~1e-attriLute spiace.



Chapter V. POLYNOMIAL UTILITY ASSESSMENT

Section 1. Introduction

In this chapter, we outline how the theories and

methods of multidimensional scaling and conjoint measurement

may be employed to obtain one extension of the uniattribute

utility assessment procedure of Novick and Lindl(y to mul-

tiple attributes. The process is straight-forward, and

therefore it is not be discussed in great detail. Some of

the interpretations of the resulting representation are

interesting, however, and are reviewed.

In Section 2, the Novick and Lindley procedure i!;

represented as a general conjoint measurement model, a:;

formulated by F. W. Young (1972). It is, then hown tht

this, representation can be extended to multiple it t iibut) 4

in a straight-forward manner. The rEsuiting tL:;Qlitaticn

is a general, fixed-s-tate, discrete, multiattribute- utility

function.

This model requires that utilities be infet t.d foi

every point in the multiattribute s- pace that is used in the

elicitation procedure. In hijh-dimcn.-,icna|] piobl ,m , thi-s

lJ
I~l~ik lf IIIIIIIH l l b I il .. . " . .. . .... .... [ ,, ,,i a I I 

J



illvolVes many paraimeters ; ther t, or f- t ht: jc Iy:;om ia I :il )o1ilt

meaisurement t ht'ozry i.-- Invokced to Ii (v ia (I,.i mc~l I Ii M;i0no L :U

representation. in Part iCU!a L , wtc k Tr d jJI- !f

polynomial o f t he( uniattriLutc :Cai I r tpr tS el t a t or.

should bc- roembeie,1, hOWtev-r , T hAt tie* 11 t20 Tj o Au

of the adequacy oi te L e7 re.se;: itation ni t'1t 1:k:w t 1; .) I. y

o f error o f meaisurement tOL t h c Ie z1erI: po 1y 1,o m I'

representation. These is:,;ues are discusse-d in s)ection 3.

Ey invokinq techniques from multidimensional L;calingrl

We can relieve -some of t he di ff icult 1c t hit ledI Novick andO

Lindley to infer utilities in the logoddis metric. W r s uj -

13 e st that th1ie elicited indifference pi clabi lit iic- may 1)(

s.caled before fitting tho i~olynomial modlel of the utilitieos.

We also ddssthe 1 robl ea of the rke l-tior sip 1Let ween

t he model s-pa ( e , t he ur ul a1t iii g n i at t Libutt I rl e:

t he poly nom iil r epr e!;cn ti t i ion) ian)d tht be nd orlyij n wgoLjo-ct

s-pace. in pai ticularL WC Ie t'ip>5 tha 1yt! 01 IJ ,

d e 9re e polynomial f unctions; M.dy Is I t' t0 t h L ;tt tie11

between the two spaces When t ht- uncii IY i Trj 'A I(et I a C j:;

,1s ;U M Ed t o ho C: so I bce1 '; t (-,f t 1! '' 1:1 ('d I ct : 1 .4 (2 - 1 1 n m )er:I

Thue works of Other authIors: a1lj the(Se 'm2 1-i nosk II :; cIte

11In -% c t jb(I~ 1 , w ( di !;c u ".; t 11 1. ~u I i:. ' - -. ,-

iepte* n;fTtAt ion iiVo(A ill t hi:. Chdtj-r in i 1(,,k it :;()M o2

th d1 *? t t f ul le: .c-ev ua I V o qd Ls I;j 1111 ca d-



general model, T re ( resented anid their int ereitirij

interpretations discussed. The problem of adequacy of the.

representation is also discussed.

Section 2. The Extended Novick-Lindley Procedure

Recalling the development of the Ncvick and Lindley

fixed-state utility assessment procedure from Cha[teL 2, the

basic model may be represented as

(V.2.1) (

where p, , i -s ; the probability that equates utility u with 't

,jamble involvinj two state-- with utilities u and u , 11;U m-

ins that u, >u >u Thi-; will new be related to the( gonerie I I

conjoint measurement model of F. W. Yrung (1972). First,

however, it mu st he rioted that we are ccncrn*ed h(ei (- wi th

three variab]les; (i, j, 111d k) whereas Ycu; I':, toimul1t i , 

k";ing conventio nal mat-ix not tioli, wi: 1c Icnc- wi with Cr! Y

two variables. Thi:; roses no ral problem ,ii,, ho it::;(Iv ,

a11y c('.f of v, vr. r 1 ways;. The eas i :;t , )tI hap! i:- to

conceivo of k ilx;nr the columns of Yeun'' matric,

d 11 j tojethc1 L indexi nj the row;



We can theteel'JC- diVe con v Eli e I)t -orr (-;p or)delc.

between the two model:; Ii lIi nj Youflg'f j--L~il mod(.]

(v . 2.2) -1.I

by let ting X be the? Mdt Li XOf iif err e,1 ut lt9 (a colucin

vector) , i z~s(i, j) and i -k, h Ioe an identity function-, and

(v 2 2. 3) u** .

Nov i t must. he n oted thi t in the: ab -,c- f rmul at ion. , ,

u , and u are used to dc-note function vdlue s, in particular

u (),u() and u (4,respectively, w he-r e a nd

re poinlts,, or object.,;, in 'he undErLyini unidttrilbute

sp a ce The Jer.--raliIation t,- multiple- ittribt- i:; n (,w

clear I f w e 1"?t L ~ a nd _ be point ; n ri riul-

tidimenisionail ,;paco~ an,' i 1) 1 f u be c untio oin t m nI1

ti (Iimen;ion[I'l .;P ou f w:ni(h _is -A j*~C 'iie-V-nt, Ii nt

the real numb rs, thon th*- above model. (V.21) q 11V t-s US a

1it iIi t y f 1in ct ion ov L a 7ul1 tid imrnn; ion aI ciutcome- Sl act-

Some o f t h i mili cations u t th 111 Mih I sho()u Id 1,

pointed out ~; I t t tb ; ~a M 1; t ha t #j; 1- in t :

el icitat ion L 0(--d ku1IE, who 11 1 1 xaIc t IV t >' 1MI a.

I d v ca t b l )y Nvick 1 1n d I(ley , 47, rVen .t d1 Yh( y Nei -k,

e-t d 1lia (;ic,; i n Nv ic k 19/H N V Ic k J.1n M i, 1ibb, t



Chen, and Woodworth, 1980), involves edCh [oint in the

underlying space without regard tc structure other than

order in the utility metric. We make the same assumFticn

that the multiple attribute utility function is a

monotonically increasing function of the underlying

dimensions. The resulting representaticn is a monotonic

point (i.e., discrete) function with a vector argument.

This is directly analogous to the imFlementation by Novick,

et alia, cited above.

Because of the formulation of the mcdel, every point hi.

the underlying space must be involved in a gamble in ) (1

that a u t i Iit y for every point be in f erri 1ie. Th oe mfi y 1,
a large number of points in the space. I-uce, t)L , xr,-

ple, that we wish to infer utilities in a three-dim, nsicnal
s;pace. We might then choose, for example, nine points of

intclrest alonj each of the three dimensicn!s. If w i wish Is

view the complete product space of thest t it.e dimension,,

we have 9*9*9 7 ]29 points in the space, and theretoto 712/

utilities to infer! (Recall that we assume that th. t-. t

r e fer red point har; utili+y zero n the mc;t pr, f , I ,

noint has utility on.)

As the number of util itiEcS t,) be estimated is ) LLJ*, 
,

tnhe number of glambls- f or which Indif !erInce proha , I t ,.s.

Mu.;t be eli(:ited i:, als ;o l.rgi. Wc woold like t" Ilk-: lt



Many Mort- qaMIhlts thaii taafr; tiiu~ .verfittinj t 1;

model A n, IadI ( wi i i f or c tiic c uh cc kir 1 e expact. that

this straight- forwari, exol -cr f hc Novick 1 na L _' 1 1tY

procedure will1 bo t ed icu s to t Y a dcio U" r..> k uiJI,

therefore not f(ea!oihlc( i"; 'ics-t C o

Using t he results cl t Sc hyis.Lnnff CI 1 50 iul Con001-

joint measurisment, we do have InT dipjca llflk aiis 1t1.>

we are willing to as;sume A Iolynomiil rePpre-scntatiOn u)f t 1c

overall mull jattita hut i 1- it y f urc1-tiC n in tCL MS of t hi_ Wa -

ji n al1 u t ili ty functions, w e c df 1) 3om C )pa ;0M( 1drsiMoy.

This gain in paLsimony is not without ccst, however; thoe

cost is discuss(!d in Secti cr 3.

A s an eXaIMPice, we mililt 2 upp92 tloat a toui + h-u&;I.>1.k-I

polynomial ro ~resentation woulld te suft fic-ii nt to adi01ualtt iy

appro xim t e the oveirall, muirIittyi loin utility Itinct ion.

hit 7rodoIl wc)u11 '! ~ ,o : 1o C: thl. W. 1:h. Mi t, f i t L

k) w cr s arin (I L or; 1 0 r'o t k) 1 t hn afa 1 j i I , :"I L .nI1 t I V; t

uitility funkctiorno . Th 1 ntI-'J I nl .I It i ' i t Y f u n (:t Wv ,1 Hf

,ilnn 013 ach ,i ins o th- ut ilit y hI ;c r , w a u W iLf i i

tr thec d a ta 1i'I -i!i.

T he polIy 11om i. I 'I 1 11 lC i Tt S1.>1' C;.: t L i -:.!! *'d,

,ate cvnFstriin;I Jl ut Ilit y I ncit iqml , thc~l 'vIii 'it i 1

tuition 1 1id th114 mIrji lii lit "! it y t u nrt 1c. t. I n 1.I

z,_ro to one. W i thl hll; U M pt Io: CE s~ 1411. I 1 it 11t 1k



U the least alI t,: e moit 1Ireler LC s t:t:,, a !I d I5U l'I

that every point in the product space is attai satl, (u

relaxable assumption), the weights in the [ olylnowiul

represenrtation must he greater than or E(Udl to Zeo, Le

less than or equal to one, and suJ t on<. T1 eo,-

constraints are not particularly difficult ,i c( ,:, illy I

implemented with well-kncwn numerical methods.

To see the parsimony cf the model, we must ,letermise

the number of parameters that must be infelrird. If we wisl,

to represent the same three-dimensional model used as an

example above, we have three uniattribute utility lunction,:

of nine states each and thirty-fcur w i- g h t,; i,, t hi

polynomial function. This gives tifty-iv- paametes to

infer (recall that two utilities inl each Of the three

utility point fanctions arC fix.'d) T )hus the olyrom i

representato n r<e u Ire con!;id 1.i 0)ly f, .W I ,,ara metr. (',

comrpared to 727)!

To implement the polynomirI ieF nto t i-i, w,- I cl f

back to Young's general con oint measurement modkl ( ;uIt n

V.2.2) . in the formulation of the Novick ind Li ,lley ( T 1 ,

we cbs'orved that the( function h (.) Ia: n ideltit y f un -

tion. Py U,;ig a f 1uh-de , 1 c vncmil f(nCt i oP t o

h (.) instead, we 0et our '! t ire: d i epr I-(IItat ion.



t T Cocr k2jir1 - C ) tn t I& I IC. -

at iAitie:;. in the ur11,i iii N vic I Cer[IL L *zn:i:
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that the underlying object space is a subset of the product

space of the real numbers (e.g., each dimension in the space

is a subset of the real numbers). In such cases, it is

useful to construct a functional relationship between the

derived utility space and the underlying space.

In the unidimensional case, examples of this construc-

tion may be found in Novick, et alia (Isaacs and Novick,

1978; Novick and Lindley, 1979; Novick, Hamer, Libby, Chen,

and Woodworth, 1980), where pieces of probability functions

are fit to the utility point function. In the mul-

tidimensional case, examples may be found in Ward, et alia

(Ward, 1977; Hendrix, Ward, Pina, and Haney, 1979; Ward,

Pina, Fast, and Roberts, 1979), where techniques of "policy

capturing" and "policy specifying" are used. Policy captur-

ing involves predicting the behavior of a judge with

relevant variables. This is also called "bootstrapping"

(see Dawes, 1973). Policy specifying involves logically

specifying functional relationships among relevant variables

in a hierarchical, binary tree fashion to develop a model.

Presumably, one could fit pieces of probability func-

tions to the marginal utility functions derived above. A

simpler method would be to employ a technique similar to the

bootstrapping in Ward, et alia. Instead of using the

utility estimates specified by a judge, however, one might
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infer the marginal utilities from the behavior of a judge in

the manner described above and then fit polynomial functions

of the variables in the underlying space to the marginal

utility functions.

Thus we have the following two-stage model of

utilities. Let be an arbitrary point in the underlying

space. Then

( V 2 .4) u () p 4 (U ( W

where p4 (.) is a fourth-degree polynomial of its arguments,

with crossproducts, and

(V.2.5) u(Q) =q

where 24(.) is a system (vector) of fourth-degree

polynomial functions of the components of - Note that each

of the components of the vector u(.), the marginal utility

functions, is a polynomial function of all the components,

and crossproducts, of the underlying space. This complexity

gives us considerable flexibility in mapping the distortion

from the underlying object space to the utility space.

Implications of this model and a couple of submodels

are discussed in the next section.
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Section 3. Discussion of the Polynomial Model

As we showed in Section 2, the polynomial representa-

tion can provide us with a more parsimonious model than the

point function representation covering the entire underlying

object space. Parsimony not only give us a conceptually

simpler model, but also one that is easier to estimate.

Because there are fewer parameters for which to infer

values, our elicitation, or data collection, task is much

simpler and therefore less tedious to both the the measurer

(which may be a computer) and the decision maker (from whom

the data are elicited).

The polynomial model is not without costs, however, as

intimated above. The major costs are (a) it is an

approximation except in strictly defined situations, (b)

there are no tests for correctness except in a few special

cases, and (c) there is no theory of error or distribution.

The strength of the model, as stated by Tversky (1967a)

and quoted in Chapter IV, is that a polynomial function is

very versatile. A polynomial function can be found to

approximate any bounded, continuous surface. It is still an

approximation and therefore does not fit exactly, in

general. Thus, it becomes important to have testable con-

ditions of correctness of the model, to identify those cases
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when the fit is exact, or a strong error theory to support

and evaluate the approximation.

Except for simple cases, there are no testable con-

ditions for the general polynomial model (Tversky, 1967a;

Krantz, Luce, Suppes, and Tversky, 1972). Two of the

special cases were discussed in Chapter IV, the additive and

the multiplicative representations. Cancellation conditions

and independence conditions for these and other simple

models have been studied extensively in the literature

(e.g., Fishburn, 1965; Keeney, 1971; Krantz, Luce, Suppes,

and Tversky, 1972; Narens, 1974; Keeney and Raiffa, 1976).

Conditions for the appropriateness of certain simple

distributive models have been investigated (Krantz, Luce,

Suppes, and Tversky, 1972). Conditions for simple bilinear

forms have also been studied (Fishburn, 1973b). These

models are all simple and at least suffer from the flaw that

the conditional utilities, those derived from fixing all but

one attribute at some combination of levels, are all linear

functions of the marginal utility of the remaining variable

attribute.

The existing theories of measurement giving testable

conditions for correctness of the model also suffer from an

assumption of infallible data. There exists no theory of

error or of distribution. If one of the axioms, say the
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transitivity part of the weak ordering axiom, fails then the

model fails. The failure of transitivity could be due to

error of measurement, but there is no way of accounting for

this in the current theories of conjoint measurement.

One approximation to a solution to the problem of model

selection with fallible data is a procedure like that used

in regression analysis or the analysis of variance. As

indicated in a previous chapter, classical regression

analysis and analysis of variance can be considered as con-

joiDt measurement problems with strong metric assumptions.

One could infer the overall multiattribute utility function

and, using it as the dependent variable, apply one of the

model selection algorithms of classical regression analysis

to the proposed model.

There are two major difficulties with this approach,

however. One is again concerned with the lack of a theory

of error or distribution. The dependent variable not only

has no established theory of error but is also inferred, not

observed. Secondly, the procedure requires that a large

number of parameters be inferred. Not only must the entire

overall utility point function be inferred, but also all the

parameters in the model. We do end with a more parsimonious

model, but a considerable data collection task is required.
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Finally, the proposed polynomial model is not always

sufficiently more parsimonious than the general point func-

tion to be worth the effort. The example selected above to

illustrate the polynomial model cast it in a good light.

Indeed, when one is interested in a three-dimensional or

higher representation with many points along each dimension,

the polynomial representation will be more parsimonious.

When one is interested in a two-dimensional representation,

the advantage of the polynomial model disappears. In the

three-dimensional case, the general polynomial model becomes

attractive only if we are modelling more than five points

along each dimension.

Since many of the applications of interest are likely

to involve models of low dimensionality, generally two or

three because of the conceptual simplicity, the polynomial

representation may be marginally useful in practice.

The general polynomial formulation does have two sub-

models that are of some interpretational interest. First,

if in equation (V.2.5) the system of polynomial equations

4 (.) degenerates into a single polynomial function q4 (),

and equation (V.2.4) is taken to be an identity function, we

have a polynomial fit of the variables of the underlying

object space to the overall utility point function. This is

essentially the "policy capturing" paradigm of Ward, et



96

alia, cited above.

Second, if we let each equation in the system of

polynomial equations (Y.2.5) be a function of only one

argument, i.e., involve only one of the dimensions in the

underlying object space, we get a simpler model. Note,

however, the implications of this model. In the general

polynomial model, we allow any polynomial rotational distor-

tion between the underlying space and the utility space to

be modelled. It is even possible for the underlying space

to be collapsed into a utility space of fewer dimensions (or

expanded into more dimensions). This second submodel

assumes a rotational restriction. It is assumed that the

dimensions of the utility space are the same as those for

the underlying object space and it is merely the scale on

each axis that is distorted.

These two submodels are conceptually interesting in

certain situations but they do not address the major

problems in the application of the polynomial model. The

problems of correctness of the model and goodness of fit

still remain.
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rI CONDITIONAL EXPECTED UTILITY ASSESSMENT

Section 1. Introduction

In this chapter we will present two axiomatizations of

conditional subjective expected utility and use them to

justify the method of multiattribute utility assessment that

is the goal of this paper. The emphasis on conditional sub-

jective expected utility theory is in response to criticisms

of the axiomatizations of von Neumann and Morgenstern and of

Savage, presented in Chapter II, which are both uncon-

ditional theories.

The unconditional theories define as primitive elements

sets that represent consequences, acts, and states of the

world. It is assumed that the states cf the world and the

relationships between them and the consequences are unaffec-

ted by the choice of the acts. In other words, it is

assumed that one and only one state of the world is true and

this fact is unalterable by the choice of an act by the

decision maker.

There have been several criticism of this assumption in

the literature (Luce and Krantz, 1971; Fishburn, 1973c;
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Fishburn, 1974; Balch, 1974; Balch and Fishburn, 1974).

Briefly, these objections center on the unconditional nature

of the theory (i.e., that the choice of act for implementa-

tion can have no effect on the state of the world obtained)

and the proposition of 'constant acts' (i.e., acts that

produce the same consequence regardless of the true state of

the world).

In response to these objections, two theories of con-

ditional subjective expected utility have been developed

(Luce and Krantz, 1971; Fishburn, 1973c). These two

axiomatizations are presented here for reference, the Luce

and Krantz axiomatization in Section 2 and the Fishburn

axiomatization in Section 3.

In the Luce and Krantz theory, the primitive elements

are events, or states of the world, consequences, and acts,

which are functions from the set of events into the set of

consequences. The acts are conditional, on subsets of the

set of events, and the theory provides for a measurable

utility and conditional subjective probabilities on these

conditional acts. The authors prove an additional theorem

that provides a measurable utility on the set of

consequences. The application of the theory is restricted,

however, to those sets that include all subsets and finite

unions of disjoint subsets of the set of events of interest.
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In the Fishburn theory, there is nc such restriction on

the set of events, but the set of acts is more restrictive,

being a "mixture set" of all simple acts, those that obtain

a single consequence (Krantz and Luce, 1974). it is this

enrichment of the set of available acts that allows the

theory to be applied to a less restrictive set of states of

the world.

In Section 4, these theories are discussed in terms of

their applicability to the situation under consideration in

this paper, namely multiattribute utility assessment. Of

particular interest is the manner in which each of the

theories avoids involving consequences. Although each

theory may be formulated in terms of consequences -- Luce

.ind Krantz (1971) prove a secondary theorem and Fishburn's

act-state pairs (1973c) may be called consequences without

loss of generality (Pratt, 1974) -- bcth avoid bringing

consequences into the theory at an axiomatic level where

they might provide intuitive appeal. In this regard, com-

ments by Jeffrey (1974) are cited that motivate a "new"

axiomatization of conditional subjective expected utility.

In addition, these formulations allcw us to address the

problem of structure in a multiattribute situation. We show

that uniattribute utility functions may be constructed that

are conditional expected utilities of the overall utility
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function. We also show that the Novick and Lindley fixed-

state utility assessment procedure may be viewed as a con-

ditional subjective expected utility procedure. If we view

the utility function as if it were a probability measure,

some interesting interpretations develop.

Section 2. The Luce and Krantz Axiouatization

In this section, we present an axiomatization that

leads to a simultaneous measurement of utility and subjec-

tive probability (Luce and Krantz, 1971). The axioms are

similar in nature to those in the previously presented

axiomatizations, and the resulting representation is similar

though specifically formulated for the application to

utility assessment.

The intention of the axiomatization is to provide a

theoretical measurement foundation for utility assessment

formulated in a more realistic way than the axiomatizations

of utility developed by von Neumann and Morgenstern (1947)

and by Savage (1954). The difficulty with these two

previous axiomatizations, according to Luce and Krantz, is

their representation of utility unconditionally.

Specifically, both previous axiomatizations of utility

require that the states of nature can no way be altered by

_ _ _ _ _ _ _ _
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the acts chosun by the decision maker In most cases, Luce

and Krantz argue, the decisions that we as decision makers

consider limit the domain of possible events, thus altering

our perceived subjective probability of t.K, occurrences of

those events as well as our perceived utilities for the

outcomes.

The axioms proposed by Luce and Srantz are presented in

Table VI.2.1. As stated by the above authcrs:

They are mostly not transparent at first sight,
but they become reasonably compelling as normative
principles once their meanings are grasped.

Axioms 1, 8, and 9 art structural, guaranteeing that th -

scets under consideration are sufficiently rich to provide a

basis for applying the other axioms and tc insure a solution

to certain equivalience -elations. Thl other axioms, 2

through 7, are descril'ed as "rationdl preference behavior

axioms" by Luce and Krantz. These are similar to axioms in

other axiomatizations of utility that are normative (what

onc should do) rather than descriptive (what one does).

Axiom 1 insures the.t all possible coobinations of con-

ditional decisions are represented in the set of decisions

under consideration. Note that so me of these may be not

meaningful. As Luce and Krantz state:

To apply our t hsoory to real-world decisions, we
must therefore suppose that "natural" decisions,
such as,; f. and g. (in Table VI.2. 1), are enriched
by certain artificial one; .... Thet measurer must
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Table VI.2.1

The Luce-Krantz Axiomatization

(Luce and Krantz 1971)

Let L be an algebra of events (i. e., closed under

unions and compliments) of subsets of a given set X of pos-

sible chance events; let N be null events, a subset of L

including at least the empty set 0, that is characterized by

the axioms and that will be the events assigned probability

zero in the representation; let C be consequences, an *1
arbitrary set; let V be conditional decisions, a set of

functions from non-null events (i-N) into C; and let > be a

preference ordering, a binary relation over D.

Definition 1: < X , E , N , C , V , > ) is a conditional

decision structure if for all A, B in [-N, R, S, in , and

all fA' fA" fAUB' fAUR" gB' gB, hA, kB in 0, the following

nine axioms are satisfied.

Axiom 1: (i) if A 0 H = B , then fA U gB is in V ; (ii) if

B c A, then fA is restricted to B in D.

Axiom 2: > is a weak ordering of 0.

Axiom 3: If A [I B = 5 and f 7 g B then fA U g ' u  fA *

A
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Table VI.2.1

(continued)

.))Axiom 4: If A B 0", then f > if and only if fU 

Axiom 5: If A I BB i=1, 2, 3, 4, kB ,AAxAoB

2 1 2 3 4
U , and hA U 9B'' U g. . then f A U 1 4A Uk i

and only if hA U > h 2 4

Axiom 6: If A 2 B = , N is a sequence of consecutive
1 2 f! 1 fi-- U 2 fr i

integers, not 2 g, and f U U 2for i,

i+1 in N, then either N is infinite or {f I i is in NV• A

is unbounded.

Axiom 7: (i) If R is in N and ScR, then S is in L.

(ii) R is in N if and only if, for all f in , f

'q f , where fA is the restriction of fAUR to A.

Axiom 8: (i) I-N contains at least three pairwise disjoint

elements; (ii) ' / contains at least two distinct

equivalence classes.

Axiom 9: (i) If A and gR are given, then there exists h. in '

for which hA " gB; (ii) if A -I E = J and hi U k >
fAUB - h 0 gB1 then there exists hA in V such that hA

U g B f AUB
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be prepared to present for serious consideration
by the decision maker some rather artificial
alternatives, and the decision maker must be
induced to make realistic decisions among them.
The usual technique is to pose hypothetical
questions.

Note that this is the practice of the Novick and Lindley

procedure described in Chapter II.

Axiom 2 is analogous to axioms in the Luce-Tukey, the

Roskies, and the Tversky systems. It means that the binary

relation > is reflexive and transitive. Axiom 3 simply

means that if two decisions are equivalent in preference,

then a decision that randomly provides one or the other is

equivalent to either.

Axiom 4 states that if one decision is at least as

preferable as another, then the preference ordering should

remain the same when both are combined with some other,

unrelated decision. Axiom 5 is the one that helps to

guarantee that the resulting utility representation will

attain at least an interval scale of measurement by

postulating that there be no reversals in preference. Axiom

6 is an Archimedean axiom like those in other

axiomatizations.

Axiom 7 is concerned with the events that will have

zero probability in the resulting representation,

guaranteeing that subsets of null events are themselves null
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and that null events have no influence on non-null

decisions. Axiom 8 is another of thc structural axioms,

insuring that the sets in question have sufficiently many

elements so that the axioms are applicatle. The notation,

V/ , denotes the set of all equivalence classes derived from

V. Axiom 9 is a solvability axiom similar to those in other

axiomatizations.

The primary result of the axiomatization is the follow-

ing theorem:

Theorem 1: Suppose that < , , , > is a
conditional structure in the sense of Definition
I. Then there exist real-valued functions u on i

and P on L such that < \, L, P > is a finitely
additive probability space and, for all A, B in
E-, , R in J, and fk" g, in 1)

(i) R is in N if and only if P(R) 0;
(ii) f > g if and only if u(f) u(g)
(iii) i An't = 0 , then

u (f OgU ) = u(f )P(AIAUB)+u(g;)P(BIAUB).

Moreover, P is unique and u is unique up to a
positive linear transformation.

It should be noted that this theorem does not assign a

utility function to the set of consequences, but to the set

of conditional decisions. Thus, as stated by Luce and

Krantz, "they do not seem to fulfill our original goal and

certainly they are different in this respect from all other

theorems of expected utility." In particular, these refer

to the axiomatizations by von Neumann and Morgensterln and by

Savage. Another theorem is proved by Luce and Krantz that
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establishes a utility function defined on the consequences.

Luce and Krantz are also able to show that, for the finitt-

case, any conditional model with their representation can bL

restated in an equivalent unconditional form, and vice

versa.

Section 3. The Fishburn Axionatization

In this section we present a second axiomatization of

conditional subjective expected utility (Fis.hburn, 1973c;

Fishburn, 1974). The set of states ci the woWid i

generalized from that of Luce and Krantz, in that there il

no requirement that all unions and subsets bf includd. To

achieve the desired representation, however, the set CI

acts, or decisions or gambles, is enriched to be a "mixtur-

set."

A mixture set is defined as follows (Herstein and Mi]-

nor, 1953):

A set S is said to be d mixture set if for any a,
b in S and for any p we can associate another
element, which we write as pa + (1-p)b, which i;
again in S, and where

la + (1-1)a = a,
pa + (1-p) b = (1-p)b + pa,
q(pa + (1-p)b) + (1-q)b = (qp)a + (1-qp)b,

for all a, b in S and all q, p.
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The resulting representation is not substantially different

trom that of Luce and Krantz (1974). Cne representation

does not dominate the other so that the choice must be

dependent on the situation or sets undrr consideration or

those likely to occur.

Table V1.1.1 presents the axicmii of the Fishburn

System. They are fully discussed in the criginal presenta-

tion (Fishburn, 1973c) and so will not be discusse,! ii

detail here. The Fisht~urn paper iio cites situations ,nd

c:onsequences of the iailure ot certain of the axioms. The

implications of each of the axioms are briefly presented

below.

Axiom (Al) means that the preference relation > is

isymmetric (a>b -> not b>a) and negatively transitive (not

a>b F not b>c -) liot a>c) . Defining "indifference" (,) as

a b if and only if not a>b & net b>a

and "preference-indifference" (>) ai,

a> i and only if a>b or a ,b,

it follows that i!; an equivalence relation (reflexive,

symmetric, and transitive) and > is transitive and comjlte.

Axiom (A2) is a continuity axiom, similat in intent to

the Archimedean axioms of the systems [testnted in plovicu:
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The Fishburn Axiomatization

(Fishburn, 1973c)

Definition 1. ( \, t, > ) is an ordered algebraic mixture

system if and only if x is a mixture set, i is a boolean

algebra of the set S of states of the world, > is a binary

relation on \xi' (where il =  1- 0.) and, for all A, B, C in

L' and x, y, z, w in

(Al) > is a weak order,

(A2) 'p: (px+(l-p)y)A > zBl and p: zE > (px+ (1-p) y))A

are closed (in the relative usual topology for (0, 1)),

(A3) xA o zB & yA wB -> (.5x+.5y) A (.5z+.'w) E,

(A4) A 'i B = 0 & xA > xB -> xA > x(AUE) 2 x13,

(A5) x > y for some x, y in X,

(A6) A q B 0 l-> xA > xP & yF > yA for some x, y in

(A7) If A, B, C are mutually disjoint and if there is an x

in \ such that xA , xB, then there is a y in such

that exactly two of yA, yB, and yC are indifferent.

where xA, for x in \ and A in i,, is written for the ordered

pair (x,A) in \xL' and xS, for x in ',, is abtrevidted x.
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Table VI.3.1

(continued)

Theorem 1: Suppose that (\, I , >) is an ordered algebraic

mixture system. Then there is a real-valued function u on

\xl ' and a finitely-additive probability Measure PA on : A

I: B in 1 for each A in I' such that (i) xA > yB if and

only if u(xA) > u(yB) for all xA, yE in Ix['; (ii) u(.A) is

linear (as a function on ' ) for each A in '; (iii) PC(A) =

P_" (B) PB (A) whenever A c B c C, A in 1, and B, C in i'; (iv)

u (x (AUB)) = PAUB (A) u (XA) + P UB (B) u (XE) whenever x in , A,

B in i, and A CB = 0. Moreover, a real-valued function v

on \ xl' and finitely-additive probability measures on A

it B: B in 1) for each A in t ' satisfy (i) through (iv) in

place of u and the P when these satisfy (i) through (iv) itA

and only if v is a positive linear transformation of u (if

and only if there are numbers a > 0 and t such that v(xA) -

au (xA) + b for all xA in, x ') and Q F for each A in :'
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ch pters. one implication of this axiom is that the set i:;

empty only if zB is not preferred (is preferred) to both xA

and yA.

Axiom (A3) is crucial to provide the structure needed

to derive the desired representation. It is a weak version

of the sure-thing axiom found in other systems. Axiom (A'4)

is an averaging axiom that acts in the alignment of the

utility functions in the resulting representation so that

the utilities of all the elements will have the same, com-

parable scale. These two axioms may be difficult to accept

on face value. Axiom (A3) is not very intuitively

appealing, and Axiom (A4), though intuitively appealing, may

be unacceptable because of the possible value of certainty.

Axiom (A5) simply states that there are at least two

distinct elements, in terms of preference, in the set 1, and

Axiom (A6) states that the set is rich enough so that

state A is preferred to state P for one act but the reverse

is true for at least one other act. The implication of this

latter axiom is that no state dominates any othe[ s;tate ill

preference.

Axiom (A7) is required to quatantep that the

Frobabilities in the reiresentation are additive. FishhuLn

gives an example whe t (A1) t hrougjh (A 0) t[, sat i.s t i ed but

(Al) fail. and the 1rol.,ahilitie; are not dddit iv,.
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Section 4. Conditional Expected Utility Assessment

The difference between the Fishburn axiomatization and

the Luce-Krantz axiomatization was described as follows

(Krantz and Luce, 1974, in comment to Balch and Fishburn,

1974):

It seems to us that the chief difference between
the two systems lies right at this point: the LK
system imposes great richness on its outcome
structure, but can get on with as few as three
atomic events (or even two, with a little extra
effort) ; the BF system can deal with any set of
basic action alternatives, but utilizes the
elaborate mixture-space apparatus. Presumably the
latter apparatus could be made more qualitative by
moving in the direction of the Savage axioms; but
in any case, what is required is a very fine-
grained structure of events or probabilities. The
essence of this difference is familiar from the
contrast between the utility measurement procedure
of (Davidson, Suppes, and Siegel (1957) and
Mosteller and Nogee (1951)). Does one best
measure utility by trading off value and
probability or by trading off value against value?
The latter has more face validity and is more
easily generalized to situations where the subjec-
tive probabilities are not well behaved; it is the
method of Davidson et al. and of the LK system.
The former method gets along with a much simpler
structure of basic options; it is the method of
von Neumann and Morgenstern, Mosteller and Nogee,
Savage, and others, and is the basis of the PF
system.

Both systems are usable in justifying the utility assessment

procedure advocated by Novick and Lindley, and adopted for

use in this paper. The Fishburn axiomatization is perhaps a

more direct justification because of its common ties with

the works of von Neumann and Morgenstern and of Savage.
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The Luce and Krantz axiomatization provides a

theoretical measurement foundation for the utility assess-

ment procedure advocated by Novick and Lindley as follows.

The Novick-Lindley procedure selects three states, assuming

that they are ordered, and equates the expected utility of a

gamble, involving the most preferred of the three states and

the least preferred, with the utility of the third, middle

preferred state. Although the equation (actually a system

of such equations) can be solved unconditionally, it is con-

venient to view each equation conditionally. It we restrict

our attention to the three states, and recalling that the

utility function is unique only up to a positive linear

transformation, we may assume conditionally that the least

preferred state of the three has a utility of zero and tht

most preferred state has a utility of one. Thus, the con-

ditional utility of the the third state, of middle

preference, is equal to the (conditional) probability of the

gamble.

In the Luce-Krantz axiomatization, a single state can

be represented as a constant decision and a gamble, also a

decision, as a finite union of constant decisions. Thus we

can formulate the Novick-Lindley Equations in terms of a

gamble and a constant deci:;ion as follvw ;: it A ,

[L 42f0r r d ! t I t,, , - I tr 0 f mi t (I LIi I ,n :1 C

M'1" jl of* lo' "tjto Luc P~i-tn -* 1
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allows us to conceive of the utility of the gamble involving

the most and the least preferred states, a finite random

union of sets A and C, as the sum of the utilities of each

vet multiplied by the subjective conditional probability of

its occurrence. Then Axioms 9 and 3 allow us to equate this

utility of the gamble to the utility of the third set 8,

representing the state of middle preference.

The Fishburn axiomatization also provides a theoretical

foundation, as follows. As above, let A=.state of least

preference!, B={state of middle preferences, and C='state of

most preference}. Assuming that the axioms hold, Theorem 1

concludes that

(VI.4.1) u(w(AUC)) pALJC (A)u(wA) - P AUC)u(wC)

for some w in \. Axiom (A2) guarantees that

(VI.4.2) w(AUC) = (px 4- (-p)y) (AUC) - zB

for some x, y, z in X. Thus, by Theorem 1 again, u(w(AUC))

= u(zB).

Since both axiom systems can adequately justify the

procedure adopted for this paper, the choice between them is

one of convenience. Given that the application of interest

(in educational selection and assignment) will likely

satisfy the axioms of both systems, we could assume both,
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thus providing a very strong theoretical bast for th-

elicitation procedure.

One criticism of both axiom systems is the absence of

the set of consequences in the axioms and the main theorems.

This is a minor fault, however, as both systems may be

extended or reformulated to involve the set of consequences.

Luce and Krantz (1971) state and Frove a theorem that

provides utilities on the set of consequences, as indicated

in Section 2. In Fishburn's axiomatization, the act-state

pairs can be conceived as consequences, as pointed out by

Pratt (1974). Jeffrey (1974) suggests a "holistic" approach

that includes consequences in the set of primitive elements.

:ndeed, states of the world, acts, and consequences all may

be viewed as events.

Now that we have a firm theoretical justification for

the elicitation procedure of Novick and Lindley, we turn our

attention to the multiattribute situation. As in either

axiom system, let S be the set of states of the world, and

let S be multiattribute, i.e., S = S1 xS2 x...xSk. Similarly,

let I = !,x Lx...x k be the Boolean algebra of the set S.

For ease of demonstration, we will make some stronger a:;sum-

pticns than necessary, namely that each is an intorvil cn

the real line. The extension illustrated here i.; vali mi fo

other type:; of sets i , such as subsets of t ht :t of

1!
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integers, because of the abstract nature of the sets defined

in the axioms.

With these assumptions, the theorems of either system

allow us to conclude, with suitable continuity extensions,

that

(VI. 4.3) u(0') = J u ' ') P( to L

where 0 is in L, !' is in L', 01'' is in t' , and i'xi'' = t.

Of particular interest is when E' = Ei for some i. Thus we

have identified a unidimensional utility function, u(-),

which Novick (1980) has called the marginal utility function

of 9', and have related it to the multiattribute utility

function as its conditional expectation (given i') This is

illustrated in Figure VI.4.1.

In addition to the marginal utility function, we define

the conditional utility function as

(VI..) u( - nf (u()
.. . sup ( u( __) __ ) - in t i ( , K

where Q, j are in C. This is simply a rescaling of the

multiattribute utility function uL-) ccrditioned on , so

that it ranges from zero to one. This is illustrated in

Figure VI.4.2.
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Figure VI.4.I
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The conditional utility function is used in the Novick

and Lindley theory as follows. Let i ,o, ak be three

states ordered on preference such that u(3i)<u(0_j)<u(0k).

The theory states that

(VI.4.5) u( ) = P U('k) + (l-p) u(O.)

for some p, 0 < p < 1. Then

uV j) - u(',i
(VI.4.6) p -

Thus, p is the conditional utility of = , given that u is

the least preferred state and -k is the most preferred state

under consideration, i.e., that u(-)=0 and u( k)=1.

The conditional utility function may be related to the

marginal utility function by observing that the conditional

expectation of the conditional utility function,

E(u(flZ*) I0_'), is equal to the rescaled marginal utility

function:

, u_') - inf 1 (0 )

(VI.LI.7) E _ule) _ l _ : -
sup (u(6) __A) - inf (u(M_)

noting that the restrictions n' are assumed to be a subset

of the restrictions 0 -

The three equations (VI.4.3), (VI.4.4), and (VI.4.7)
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provide a framework for the assessment of the multiattribute

utility function u(0). As the marginal and the conditional

utility functions are uniattribute utility functions, we may

apply the elicitation procedure of Novick and Lindley. We

may present choices between a gamble and a sure thing in any

suitable manner. The resulting system of nonlinear

equations in expected utility may be solved using any

suitable numerical method. The multiattribute utility func-

tion may then be recovered by applying the relationships

among it and the marginal and the conditional utility func-

tions displayed above.

As developed in Novick and Lindley (1978), the use of

convenient models for the utility function and the

probability function over the states of interest can greatly

simFlify the computation of expected utilities. Those

authors suggest using a cumulative distribution function for

the utilities and conjugate probability functions. This

suggestion works well in this situation. If we limit our

attention to a two-attribute situation for the purpose of

illustration, we can see that

(V I . 4 . 8 ) u 0 1 r I u 0 1 , 2 1 0' =

and that

(VI.4.9) U 2' ' 2N2 U' 1' 2: UiK
21 2 -) 1
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With conveniently chosen utility and probability functions,

the parameters of the resulting probability functions (for

the marginal and conditional utility functions) may be cal-

culated (Chen and Novick, 1981). This idea is developed

more fully in the next chapter.
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Section 1. Introduction

In this chapter, we outline a procedure to assess mul-

tiattribute utilities. Details of the procedure are

generally referenced to other chapters of this paper or to

the appendices. The sections of this chapter are divided as

follows.

In this section, the paradigm for the multiattribute

utility assessment is defined and the parameters of the

problem are identified. The discussicn is brief as the

problem has been amply discussed in Chapters I and II of

this paper. The design of the computer modules of the

implementaton of the procedure developed in this paper is

discussed in this and subsequent sections. The utility

assessment procedure is presented in three phases:

elicitation, coherence, and modelling.

In Section 2, the elicitation phase is discussed.

Again, the discussion is brief because the procedures

involved have been presented in detail elsewhere; for exam-

ple, in Chapter II of this paper. Two elicitation
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procedures are implemented.

In the Conditional Coherence Procedure, a set of gam-

bles for a conditional set of attributes is presented; the

decision maker may then review and alter the indifference

probability for any gamble in the conditional set before

another conditional set is presented. Note that this

procedure is analogous to the Global Coherence Procedure,

otherwise known as the Least-Squares Coherence Procedure

(Novick, Hamer, Libby, Chen, and Woodworth, 1980).

In the Regional Coherence Procedure, the decision maker

is presented with additional coherence gambles after each

pair of gambles from a conditional set. The procedure is

like the procedure of the same name currently in the CADA

Monitor (Novick, Hamer, Libby, Chen, and Woodworth, 1980).

In addition, two entry formats are available (Novick,

1980; Novick, Turner, and Novick, 1981). In one, the

decision maker is presented with a structured, dynamic

sequence of probabilities for each gamble triplet and

responds whether the gamble is preferred, the sure thing is

preferred, or the choice is indifferent. In the other

format, the decision maker is presented with the same choice

between a gamble and a sure thing and responds with the

probability that would make the choice indifferent.
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In Section 3, the coherence phase is discussed. The

gamble triplets are presented along with the elicited

indifference probabilities. If some estimation has tdken

place, the estimated, coherent indifference probarilities

are presented, as well, along with the estimates of the

parameters of the model chosen for the utilities. The

decision maker may modify or delete any of the gamble

triplets from the modelling phase. The decision maker may

also request that additional gamble triplets be presented

for coherence checking. This phase is entered after the

modelling phase for acceptance of the estimates by the

decision maker.

In Section 4, the modelling phase is discussed. A non-

linear least-squares algorithm, based on the Newton-Raphson

method, is used to estimate the parameters of the

probability distribution chosen to model the utilities of

the problem. Three utility models are implemented: the

mu4tivariate normal cumulative distribution function; the

Dirichlet cumulative distribution function; and the mul-

tivariate generalized beta cumulative distribution function.

The properties and the derivation of this latter distribu-

tion are presented in Appendix A; the former two

distributions are well-known. The necessary derivatives of

the three distributions are presented in Appendix B.



The scaling transformations of the coherence phase arek

proposed to be static and aLe therefore incorporated direc-

tly into the modelling phase. The mcdelling may be Fer-

formed in one of three metrics: the metric of the

indifference probabilities; the logodds metric; and the arc-

sine metric. The uses of the logodds and the arcsine

metrics are well-known in the analysis and estimation of

probabilities and proportions (e.g., Ncvick and Jackson,

1974). The necessary derivatives for these transformations

are also presented in Appendix V.

Once the estimates have been calculated, the procedur

returns to the coherence phase, where the decision makeL may

accept the estimates or modify the data for turth-i

estimation. A general discussion of the entire procedure is,

presented in Section 5.

In general, the problem may be defined as follows. (ne

has a multiattribute decision to make and desires to asses.s

the utility over this multidimensional space. We will lit

denote the attribute vector. We will assume that the

attribute space is continuous, or at least that it may be

adequately approximated by a continuous space. (This asisum-

ption is imposed by the choice of models. If a suitabl*-

multivariate discrete probability function could he

postulated, it could be fit into this framework with only a



125

little modification in the model estimation phase.)

The elicitation algorithm requires that we present gam-

bles involving specific points within the attribute space;

therefore, the decision maker must first be asked to

determine these points. Several restrictions are useful.

First, the procedure is simplified if subsets of the

points may be chosen so that the subsets are convenient con-

ditional sets. The subsets are convenient if the con-

ditional models for the subsets are simple models. Since we

are modeling the utility functions by cumulative distribu-

tion functions, this convenience criterion requires that the

conditional models be tractable cumulative distribution

functions. Considering the models that we have selected,

the most convenient set of points are those of a rectangular

hypergrid. This allows the subsets tc Fe states that diftei

in only one dimension, and the conditional rodels to Le sim-

ple cumulative distribution functions.

This restriction also allows the s1m~ie:;t method ful

selecting the points to be used. The dccison m*kt i merely

determines the number of dimensions in the problem drid then

selects several points a lnnj each dimtnsioi.. Thf !;*. point!,

determine the rectangulal hyperJLId.

This is not a substantial iestricticn. Altnough it 1:'
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reasonable that some of the resulting multidimensional

points may be improbable or difficult for the decision maker

to value, the model for the utility function does not

require that every point in the hypergrid be involved in the

elicitation phase. This is an advantage of the functional

model as opposed to the point estimation model, such as the

least-squares procedure of the CADA Monitcr (Novick, Hamer,

Libby, Chen, and Woodworth, 1980). If a Farticular point

poses a difficulty, the deci.';ion maker may fimply choose to

not judge any gamble triple that involve.; it.

Second, we requile that the utility tunct ion Lt.

monotonically increasinq in all dimensions. v;aln, this is

a convenience for our choice of models; indeed, the model,

impose this condition. It is, howevcr , ,I I k

restriction. :n many cases where this restr iction iJ! 1rcl

m:, t, the prohlem may be redefined.

For example, in a one-dimensional prcbltm in which th"

utility is hiuh in the middle of the attribute sIdce 'tn

f 11'; off to waId both ,,xt rI, mc. , :s uch a!; 1 r sn o m. *ed (-, 1

t uat ion'; in which both a hi )h 1,,!aq(1 qE d U low io-apj- h tv-

low V A1  th'1 " tt . t , t I , V '. I O 1,. i "f ,  i cu li

(N Pv hik,' l l, l t ,y,1,flD 1) , !(to Ut !,v t ', V , cw, , ' t ,i
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the decision maker can select points that are of essentially

minimum and maximum value. Thus we can assume, without loss

of generality that the utility function ranges from 0 to 1.

This is in effect defining a conditional utility func-

tion. The point where all dimensions have the least value

is assumed to have value 0, and the point where all

dimensions have the greatest value is assumed to have value

1. With some additional information or assumptions, we

could unconditionalize the re:,ilting utility function; we

will not, however, discuss this ioint further.

Section 2. The Elicitation Phase

The elicitation p has- for the multiattribute utility

assessment is essentially the same as was discussed in Chap-

ter II and implemented in the CADA-198C MonitoL (Ncvick,

HaueL, Libby, Chen, ald Woodworth 1980). There are two

elicitation alyorithmii: the Conditicnal Ccherence Procedure

and the Regional CohiLence Procedute ( Ncvick, Chudrng, ,t[d

DUKeyrel, V379; Novick, Hamvi , 1i.hby, Cht-n, and Woodworth,

1980) . Thfrp ii twn t ntty format:,- direct entry (of the

indif tetence probabilIty) dnd "eid - z ," (Novick, I 9}0 ;

Novick, Turner, and Novick, I1%I). In addition, the

decision maker ha., th. ol'tlen of pas ;inj, or not making, a
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judgment.

In both the elicitation algorithms, the decision maker

is presented with a sequence of gamble triples. Each triple

consists of a gamble between two points in the attribute

space and a "sure thing" point. The triples are chosen so

that the sure thing point is intermediate in utility

relative to the two points in the gamble and so that only

one dimension in the attribute space is varying among the

three points. The goal is the probability of the higher-

valued point in the gamble such that the decision maker is

indifferent between the gamble and the sure thing.

For example, suppose that we have three points in the

attribute space, i , i , and :,k in order of preference. The

decision maker would be presented with a choice

(hypothetically) between obtaining state for sure andJ

gambling on obtaining state k with probability p or obtain-

ing state , with probability 1-p. Our goal is to elicit

the probability p such that the decision maker is

indifferent in this choice.

In the Conditional Coherence Procedure, the gamble

triples are presented in sets, whe:e only one dimension ot

the attribute space is varying in each set. The procedure

is like the least-squares procedure of the CADA-1980

Monitor, except that we are considering the one-dimensional,
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conditional utility function within each set. After judging

each set, the decision maker may elect to review the judg-

ments of that set and correct any errors.

The conditional sets, as they assume fixed states for

all but one attribute, are chosen so that they cover the

attribute space. The decision maker may elect to pass on

any set. Within each set, the gamble triples are chosen so

that the three states are adjacent in the dimension that is

varying.

For example, suppose that the decision maker has chosen

N states, 61 , ' .0N " along a single attribute dimension

for elicitation. The decision maker would be presented with

a choice between a state 01 for sure and a gamble involving1

states Ui+l and 6 i 1 , where i is some integer between I and

N.

The Regional Coherence Procedure differs only slightly

from the above. As in the Conditional Coherence Procedure,

the gamble triples are presented in conditional sets, where

the states of all but one attribute are fixed. Again, the

adjacent gamble triples are used.

The triples are presented in pairs, with each pdir

involving only four states. After each pair of adjacent

triples is presented, the two other triples from the four
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states are presented with the implied indifference

probabilities. For example, let a, u b, u , and t:d be four

adjacent states in a uniattribute assessment. The decision

maker would be presented first with the two choices:

for sure gamble
p 1-p

1.
2. 0 C a

C -d b

and might respond with probabilities p1  and p2 f respec-

tively, that make the choice indifferent.

Based on this information, coherent indifference

probabilities may be calculated for two other choices:

for sure gamble
p 1-p

3. ebd a

cd a

This is accomplished by examining the conditional utility

function over those four states. Since two utilities are

fixed (at 0 and 1), only two gamble triples are needed to

determine the conditional utility function. The decision

maker may then accept the implied indifference probabilities

or correct any of them. When they are acceptable, another

pair of adjacent triples from the same conditional set is

presented.

The above procedure is like the proceduLe of the same

name in the CADA-1980 Monitor. When all the pairs from onie

LJ

. . .. . . .. .
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conditional set have been presented, the decision maker may

review the judgments and proceed on to the next set.

The entry formats are available in both of the above

procedures. The direct entry format allows the decision

maker to specify the indifference probability for the

presented gamble triple. The "ends-in" format allows the

decision maker to respond with a preference for the sure

thing, a preference for the gamble, or indifference. When

the decision maker is indifferent, another gamble triple is

presented.

For example, suppose that the decision maker has chosen

states .- " v 1 1 and , in order of preference, for

elicitation in a uniattribute decision problem. In the

direct entry format, the decision maker would be presented

with the following choice:

For Sure Gamble P that makes
1-p you indifferent

Si+1 .- 1

The decision maker would enter the probability for the gam-

ble that would make the choice between the gamble and the

for-sure state indifferent.

In the "ends-in" format, the decision maker is

presented with a probability for the gamble as well as the

gamble triple. The probability is initially either 0.1 or
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0.9. For example, the decision maker might be presented

with the following choice:

Option:
I I
I i+ 1  I 0. Indifferent
I For sure i Gamble I 1. For sure
I I- i_ 1  I 2. Gamble
I I 3. Restart

Which would you prefer if the p = .10?

The response of the decision maker determines whether the

indifference probability is higher than, lower than, or

equal to the presented probability. The next probability to

be presented is calculated to be near the opposite end of

the resulting interval.

For example, suppose that the presented probability is

0.1 and the decision maker prefers the sure thing. Thus, we

know that the indifference probability is in the interval

(0.1,1.0). The next probability is calculated to be near

the end of the interval opposite to the presented

probability, or 0.9. If the decision maker then prefers the

gamble, then we know that the indifference probability is in

the interval (0.1,0.9). This sequence continues until the

decision maker responds with indifference or until the

interval becomes insignificantly small; this threshold is

set to 0.05. In this latter case, the middle of the inter-

val is selected.
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In both options, the decision maker may avoid judging

the gamble triple. In the "ends-in" option, the decision

maker may also elect to begin the questioning for the

current gamble triple again.

Section 3. The Coherence Phase

In actuality, the previous section described the itera-

tion between the elicitation phase and the coherence phase.

In the Conditional Coherence Procedure, coherence may be

checked after each conditional set of gamble triples is

presented. In general, however, there will be insufficient

data to make initial utility estimates; thus, the coherence

checking involves only the review of the assessed

indifference probabilities.

In the Regional Coherence Procedure, coherence is chec-

ked after each pair of gamble triples is presented. There

is generally insufficient data to make utility estimates for

the entire conditional set, but it is possible to calculate

the indifference probabilities for gambles in the region.

The rest of the multiattribute utility assessment

procedure is primarily an iteration between the coherence

phase and the modelling phase. After the parameters of the
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model for the utility function have been estimated, the

implied indifference probabilities are presented along with

the assessed indifference probabilities. The decision maker

may decide to accept the fit, modify any of the assessed

indifference probabilities, or delete any of the gamble

triples from consideration.

The indifference probabilities, both assessed and

implied, are presented by conditional set. The difference

between the two, in the selected metric, is shown, as are

the states involved in the gamble triple.

Optionally, the decision maker may view the estimates

of the parameters of the chosen model, the calculated

utilities of selected points in the attribute space, or a

graph of the utility function. The decision maker may also

view the implied indifference probabilities of gambles not

used in the modelling phase.

If there are any modifications to the set of gamble

triples and associated indifference probabilities, the

modelling phase is entered again. This iteration continues

until the utility function is acceptable to the decision

maker.
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Section 4. The Modelling Phase

The modelling phase is an iterative, non-linear least-

squares algorithm. The objective function

- 2(VII.L.1) F = E(m(p.) - m(p 6 )I

is the sum of squared deviations of the assessed

indifference probabilities from the implied indifference

probabilities in the chosen metric. The algorithm attempts

to find the minimum of equation (VII.4.1) with respect to

the parameters of the chosen model for the utilities. There

are three metrics and three models from which to chose.

The problem is to solve for the roots of the system of

first-order derivatives of equation (VII.4.1). The Newton-

Raphson method is used because it is stable and the neces-

sary second-order derivatives are algebraically obtainable

(although extremely complex). The new parameter estimates

at each iteration are calculated by

(VII.4.2) Ti+i 
=  

Ii - Hig

where ji is the vector of parameter estimates at iteration

i, 1 qi is the gradient vector, the first derivatives, and 1

is the Hessian matrix, the inverse of the matrix of second-

order derivatives. The gradient vector and the Hessian

matrix of equation (VII.4.1) are presented in Appendix B.
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The calculations of the Hessian matrix and the gradient

vector are tedious and time-consuming. Therefore, a

subiteration is also used. The correction of equation

(VII.4.2) is applied until the minimum is overshot; this

last correction is then rescinded. The correction is

repeatedly halved, and applied (unless it overshoots the

minimum), until the correction is negligible (on the order

of 0.00001). The iteration continues with the recalculation

of the gradient vector and the Hessian matrix. The itera-

tion terminates when the sum of squared deviations differs

from that of the previous iteration by a negligible amount

(on the order of 0.00001).

Checks are made to insure that the parameter estimates

remain within valid boundaries. If they exceed the boun-

daries, the correction is rescinded and halved, and the

iteration continues. Note that the models insure that the

utilities are monotone, so this need not be checked. To

protect against a very slow convergence, the iterations are

presented in sets of ten; the decision maker may terminate

the estimation phase at the end of any set.

One additional problem may arise. If the utility

estimates become too close, the numerical algorithm may

become unstable. This may be observed by examining the

derivatives used to calculate the improvements in equation,
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(VII.4.2). If the utility estimates used in any gamble

triple to calculate the derivatives become essentially equal

(e.g., within .03), that gamble triple is not used in that

iteration of the modelling phase.

The metrics that are available are the indifference

probability metric, the logodds metric, and the arcsine-

square-root metric. The indifference Frobability metric

implies the identity transformation:

(VII.4.3) in(p) p

The logodds metric

(VII.14.Li) ni (p) -~ lcxj

and the arcsine-square-rcot metric

(VII.4.5) n(p) = arcsin (Ti)

are widely used in Educational and Psychological research

(Novick and Jackson, 1974) for transforming probabilities to

obtain well-behaved quantities. The sensitivity of the

solution to these metrics has been researched (Mayekawa,

1981) and found to be insignificant. They are made

available for completeness. The necessary derivativv i of

these transformations are presented in AFpendix h.

The three models that are available are threp mul-



tivariate cumulative distribution functions: the mul-

tivariate normal, the Dirichlet, and the *ultivariatce

generalized beta. The normal and the Dirichlet

distributions are well-known. Iheir univariate

counterparts, the univariate normal and the standard beta

distributions, have been used to model uniattuibute utility

functions ( Novick and Lindley, 1980; Ncvick, Hamer, Libby,

Chen, and Woodworth, 1980; Chen and Novick, 1981).

The generalized beta distributicn was developed

specifically for this application. The marginal

distributions reproduce the same functional form, as do the

conditional distributions with all but one dimension fixed.

The univariate counterpart is a three-Farameter beta-like

distribution. The standard beta distribution can be shown

to be a special case. The derivation of this distribution,

as well as that of a companion distribution, are presented

in Appendix A.

Because of the theory of conditional expected utility

and the modelling of the utilities by cumulative distribu-

tion functions, we find the estimation may he greatly sim-

plified. We need not work directly with the multivariate

cumulativo distribution function. Ey defining the con-

ditional state sets as we have, we need cnly work with th(,

corresponding conditional utility functions.



Each implied probability P1 ,, in equation (V1I.4. 1) ill

calculated as a conditional utility, assuming that the three

states in the gamble triple are all that matteL. ThE cdl-

culation requires a utility for each state,

) - u(

(V 1. . i j k u (" ) -

but the utilities may be from any conditional utility func-

tion. They may be from the multiattribute utility function

(every utility function is conditional). They may also Le

from the conditional utility function over the conditional

set of states to which the gamble triple belongs. It is

this latter approach that we take here.

Because of the manner in which we have defined our con-

ditional set of states, these conditional utility functions

are uniattribute. Because of the models that we have chosen

to use, they are univariate cumulative distribution func-

tions. The parameters of these conditional models are func-

tions of the parameters of the multiattribute model. Thus,

we may find the estimates of the parameters of the multiat-

tribute utility function directly using this least-squares

procedure. The necessary first- and second-order

derivatives of the three models are presented in Appendix B.
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of dimension reduction because 1inear transformations

Vt2produce the s,me functional form. We could det ermine

other suitable distributions for known transformations, as

well. The difficulty arises when we are nct willing or able

to specify the functional form of the transformation.

Some of the usual applications for the multiattribute

utility assessment procedure may be suitable tor the above

type of analys;is. S uppose that we have an attribute to b(

us;d in a decisiun . In a decision with risk, w7 will not

know the value of this attLibute when we must make the

decision; we may, howevcr, have a prediction equation for it

u-inj :;-veral available masarcs. For examj:le, we may wish

to decide to accept or teject a graduate :;chool apFlicant

based on first-year grade:: p'red ictted by verbal ana

quantitative Graduate Record Examination scores.

If the rredict in e(uat ion is li n*ar , as they usually

are, and it we are satisfied with a cumulative normal

distribution function model for the utilities over the

attribute of f irUs t- yea I . ades, we C hculd bH able to

(etPr'mine a two-dim, ensIona1 ,itility tuntcticn ov , the GvF

1;cores. This line 0f LrIarch i: t k vnd t h. sca p of this

j-,iper and if montione hio, onl y to ldlcat c itertion; that

it may take. It will 1nvQ',t ated in a . A i t. ti d y.



1L4

Apt4Pix A The Generalized Peta and F Distributions

Section I. Introduction

In developing the multiattribute utility function

analysis based on cumulative distribution functions, it was

necessary to derive a new probability density function of

multiple dimensions. It may be that the functions presented

here are two of the "many possible forms that are not in use

at present and are not likely to have useful applications"

(Johnson and Kotz, 1972).

In the following sections, two multivariate probability

functions are derived. They are both based cn

generalizations of common distributions, namely the beta

distribution and Snedecor's F distritution, and they are

simple transformations of each other. The multivariate

generalized beta distribution is discussed in Section 2 and

the multivariate generalized F distribution is discussed in

Section 3.

The moments of the generalized beta distribution are

not computable in closed form. Approximations may be cil-

culated from the moments of the generalized F distribution.
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Both the approximate moments of the generalized beta

distribution and the exact moments of the generalized F

distribution are presented in Section 4.

Section 2. The Generalized Beta Distribution

The generalized beta distribution is a simple extension

trom the common beta distribution. It uses general gamma

random variates instead of the chi-square random variates

used in the derivation of the common beta distribution.

The impetus for the generalized beta distribution is as

follows. For a model of a multiattribute utility function,

we wanted a cumulative distribution function that had the

same degree of flexibility in form that the beta distribu-

tion provided. Although the Dirichlet distribution is a

multivariate generalization of the beta distribution, it has

the restriction to a lower-dimensional simplex that is

undesirable in some cases.

In particular, we wanted a multivariate distribution

having positive probability on thr full (0,1) hypercube,

marginal distributions that reproduce the Same

distributional form, and "nice" conditional distribution,.

We were looking for a multivariate distribution whose
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univariate marginal distributions were beta distributions

and which had some sort of standardized univariate con-

ditional distributions that were beta distributions, much

like we have in the Dirichlet distributicn and the normal

distribution.

We discovered a multivariate distribution with

reproducing marginal distributions, univariate marginal

distributions that are a generalization of the beta

distribution, and univariate conditional distributions that

are the same generalization of the beta distribution. We

are calling this distribution a multivariate generalized

beta distribution of the first kind.

Let X 0 , X I, ... , X r be distributed as independent gamma

random variates with parameters and i 0, ... ,

respectively. The joint distribution of X0 , X1 ... X is

given by

I-

(Ai .2 1)(A.2.1) p(x0 , x1 . ... ) X

Let Y. X " and Y = X /(1-X ) for i 1, .... r. This

gives the inverse transformation X = Y , and X

Y Y /(9l+Y) for i : 1, .... r. The Jacobidn for this
di i

distribution is given by
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(A.2.2) J[X-Y] = 1y 2  y r

Y0 r r -
0 ( y- - )2 0 .. = Y 0 r i ( -Y l

0 1yl 0___=

IV

0 o 0 . . YO

- 2(l-y 
r )

Thus, the joint distribution of Y ,i .... Y_ is given by

0
0 CA0-0(A.2.3) P(Y0 Yl. . .Y ) - (0 0 e- Y

*r r~.(O. 3. (y0~iJ
ei. \JYYii

[y T (1-yi 2
- 0 1 ia. 9Ir r i .r 12

1'

rr r
r0 0+Ei~l~ \l-Yi

0 r) 0 i=Yi

(r r
here , . r represents the

i :0 ]  i = l

probability density function of a gamma-distributed random

r r Y
variate of parameters i0 i and o + i y Thus the

i=O i -

marginal distribution of Y Y r is given by
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0 r 1 1 i

( A . 2 . 4 ) p ( y l . . . r r - , r'
rF
i=0 + " . .<0 iLi i -y

This may be rewritten to give

( . 2r r I

( .= ____ i -- 0

1

where \i

}1

To find marginal distributions, noting that

;)(Yi/(1-Y i))/Dy. (1-Y. 2 and integrating by parts, we
1 1

find

(A. 2.6) p(Y I'.... Yr-] ) ) P (YI . . Yr )  :Yr

0
ir Y ,.-

~Yi
i:0 1r 1=-  2

* r K1Y7 Y/__ r

Or Y i ' o i

ili2-
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1-,

0

r r-r

i C rri  -

r-l r-1

I ) W r
rr

where

+ Z" I.

Therefore, the marginal distribution is iven by

t-1-, r-l_ iY i  i j 21
(A.2.7) p (Yl .... I Yrj=V i O i  i=li -i:Y rTli

(ri1 r-1 Y "  :

n Ot of t ia =o

since the distribution of W in equation (A.2.6 is a beta

of the second kind and has a constant ot proportionality

ri
i=O

From equation (A.2.7) we can see that the multivariate

generalized beta distribution has the convenient property at

reproduction of form: any subset of the variates again form

a multivariate generalized beta distribution. Indeed, the

univariate marginal distribution is given by



(A. 2. 8) p (yi)  (c ) a0  r (ai  " { Yi ,-,0+ i
0 1 I+xi . -Zy'

thus reproducing the generalized beta form.

Note that if Y is distributed as a standard Lcta r,,dom

variate of the first kind, with parameters a and

(A.2.9) P(y) - y() ( (l-y

r) +
F(L) L i__ _•±-

Hence, the standard beta distribution of the firtr kind is

the generalized beta distribution with parametr. , and

Conditional distributions may be found ii L 't< w Iys.

One may be found by observing that
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(A.2.10) -~ rll .... Y L-

r-1I

r j=- 01 K' r1

r- oI L= IK-y
-i=1-

r 
-o 

ir-1

'r___ ( #- iO

*__r (1)

-,. y r= i r~ rj

l-y.

r 1- i j

r ry

--
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(Yr , -,

Let y + , then *r .
1 = ii-- i ,-yp

r r " r

r\* .+ r/ '/_

r

Th us

(A.2.11) P(y ... r -

' '-r-i - -

rr

*( -yr  )'i=o

r

r )

-1-- -

* .. .- -- 5

ly r

-'r

Hence, Y: I¥1 ... ,C I is distributed as a generalized

beta random variate with parameters , " , and . 1,

i.e., a standard beta random variate of the first kind.

Note that the moments of Yr IT1 I...'. I-, are not dependent

on Y I ... IY-i , and that the joint distribution ot the r

conditional random variates thus defined dLC constrained :o
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that their sum is equal to one, as in the Dirichlet

distribution.

An alternative conditional distributicn may be found by

observing that

(A.2-12) p(yr l . ..y l) = __ i- i&-Xr

r Y Yr-1 , r Yi . 'r_ i -Yi]

y..

i-0 A yr - Y

"i i r- y i 1 r
S irzl 1 l-y1s

i =1 1 1L y- r r-
* rr

+ r- ] Y i ... i0'

- \i =O 1,

-=1i 1 Yi x"Yr ''i o

+- :i- -- i r - ,

+ YrI f

T irl~i .
i 0 il
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Yr

I1+ r f Y

l+ : i~l i -J i']

2

r -Yr

r-1 /Yi \, i
_1)-- 2

r r
** Ar (i-;Tr ** Ar y) ",an

Let y = ;then y - _ Yr
r-1 Yi r-1 rii.

1+ F1 1  +i l+ r r-
i=1 i d- y

r (y .... .*

(A .2.13) P (Y( K r F' :=- - __ r ' - r

L+Yr

The distribution of Y is thus a beta distribution of the

second kind. This is a special case of the distribution

discussed in Section 3, the generalized F distribution, of

this Appendix A. Note that Yr Yr /(1-Yr g iven

Y ..... yr-1. ; this relationship is developed further in

Section 3 as well. Also note that the moments of Y

given Y " " Y' r are not dependent on Y, .... , - but
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that the expected value of Yr/(1-Tr) is linear in the odds

ratios of the conditioning variates.

Another conditional distribution may be derived by

observing that

(A .2 .1 4 ) p (y r !y 1 .. . .Y r l )  r -

r i= r ri)

-'r

r (f-r
r

I r- +), ri ? i=

*i -i 2

r-1 Y -0"

r-

r { \i..

' 4 " j-

r \l-Y.)

r-1 Yi-
1+1
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/ ____ N

Hence, rized = tY. '- -i is distributed as a lencralized

, r
r-1 (

Except for the result that the moments of the

generalized beta distribution are not obtainable in closed

form, this conditional distribution is the most useful of

the three. It relates directly to Y , not to the odds ratior

of Yr" It is the same distributional form as the mul-

tivariate and marginal distributions. Finally, the moments

are likely to be dependent on Yi, ... 01 , as odds ratios,

through the parameter

The fact that the moments are not obtainable in cloc;ed

form is a drawback to its usefulness. We may, howpver,

obtain approximations to the moments, using the companion
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distribution discussed in Section 3. The moments of both

distributions are discussed further in Section 4.

Section 3. The Generalized F Distribution

The generalized F distribution is a simple generaliza-

tion of the standard, Snedecor's F distribution. It may be

derived from an underlying gamma distribution like the stan-

dard F distribution is derived from the chi-square

distribution. Note that the chi-square distribution is d

special case of the gamma distribution. The generalized F

distribution may also be derived as a transformation of the

generalized beta distribution, in much the same way as the

standard F distribution may be derived as a transformation

from the standard beta distribution. In fact, it was

derived initially this way by this author.

Both derivations are presented below, with the deriva-

tion from the gamma random variates first. As in the

previous section, the development is in terms of the mul-

tivariate distribution.

Let X , X , ... , X 1v di!-tribut( d a:s independent (jamm,

random variates with parameters and , i=O, 1, ... ,

respectively. The joint dis;tribti*icn nf Xi, X,, .. X i
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given by

( A. 3.1) P(X0, x e J X

Let Z = XO , and Zi = X./X for i=1, ., r. This gives the
0 01

inverse transformaton X= Z., and X. = Z*Z . for i=1,11

r. The Jacobian for this transformation is given by

1 z z 2 ... r

(A.3.2) J[X Z] 0 0 0 ... 0 z

0 0 0 z0

Thus, the joint distribution of Z , Z ... , Z is given by

;; 0 0-1 - z0

(A.3.3) p(z 0 ,Zl.. Z) - 0 0 0
r o

r - 1*i_ : ~ ( Oi- 1 i1 - 1 ,J :,.

=0 i

r r . '0 i 0 1 )

0 0

i =0 i' ' i )

where ' irepresents the probability aensaty

(i ,~ 0 1
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function of a gamma-distributed random variate with

r r
parameters _ and +  Z Thus the marginal distribu-

tion of Z ... Z is given by

1'i

r r i

(A.~~ ~ ~ ~ 3. 4)p? p. I-
rK

r ri~ i 1

-0Z

where i = 0 as in Section 2. This is the multivariate

generalized F distribution.

Marginal distributions may be found by integration, so

that

r-1 ) r-I ,

i0 i/ 1=1 1 ___ 0<
(A.3.5) p(z , .... r ) = i:0_ (---.--0 -

" I r-i
r-1 r r--1 . i=0 Ai
1i=0 1 .. i 1i

and

( .3.6) -( 0. i 0
0 " ii-<:> 0 i

Thus, the multivariate generalized F distribution has the

convenient reproduction of distributional form in any subset

marginalization, including the univariate marginal

d i !;triutions.
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Note that the standard, Snedecor's F distribution is a

special case of this generalized F distribution. If Z iS

distributed as a standard F random variate, its probability

density function may be written

1 +~ -1 k2(A.3.7) p(z) ) k 1  2 1 I 0 z.

2 12 _______1_2___

Thus, it is a generalized F random variate with parameters

k I , k 2 , and k = k/k 2

Note also that the beta distribution of the second kind

is a special case of the generalized F distribution, with

A = 1. In addition, the multivariate F distribution and the

multivariate inverted beta distribution mentioned by Johnson

and Kotz (1972) are special cases of the multivariate

generalized F distribution in the same way as are the stan-

dard F distribution and the beta distribution of the second

kind of the univariate generalized F distribution.

The generalized F distribution may also be derived from

the generalized beta distribution as follows. Let Y be

distributed as a generalized beta random variate with

parameters ( , ,1 I and A Let Z Y/(I-Y); then Z

(1-Y) 2 .Y and

J
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L + O z - 0 < z,
(A. 3. 8) (Z ) +

(I- H ) [1 + x pIZ

which is the probability density function of a generalized F

random variate with parameters a, V,, and x . The same

transformation applies in the multivariate case as may be

seen by comparing (A.2.5) and (A.3.[4).

Conditional distributions may be found in ways similar

to those presented in Section 2. If we define

A z
*** r r

(A.3.9) zr

we find that Zr is identical in distribution to Yr of

Section 2. Similarly, if we define

Z
** - r r

(A.3.10) Zr + 'r-1

i=1 2 1

we find that Z is identical in distribution to Y .
r r

Lastly, we may find may the distribution of Zr

Zr IZ, ... ' r-1 is that of a generalized F random variate

with parameter r7 1 and

r

* r
(A . 3 . 1 ) + = r - 1 )1 + ). z.]:I-i 1
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Note that Z* is a transformation of Y, of Section 2 such
r

that Zr =Y1 /(1-Y r  "

The moments of the generalized F distribution are

algebraically calculable, and are presented in the next sc-

tion.

Section 4. The Moments of the Distributions

In this section we discuss the moments of the

generalized beta distribution and of the generalized F

distribution. The moments of the latter are algebraically

calculable, whereas those of the former are not. we will

derive the algebraic forms of the moments for the

generalized F distribution first, and then derive

approximations for the moments of the generalized beta

distribution from them using Taylor's series expansion of

the transformation from the generalized F distribution to

the generalized beta distribution.

Let Z be distributed as a generalized F random variate

with parameters , , and:

(A.4.1) p(z) A + 0 z
r( ) ) [i + ]
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The t-th moment about the origin is given by

Co a (+t-I

(A.4.2) E[z f r(+xz__ C , z
0

I,1 (0,+t) 1, ((v-t)t<t
T, (a) I' (' ) A

For t > B, the moments are infinite. Thus, the mean . ,-- Z

variance j2 , and skewness y of this distribution are given

by

(A.4.3) C - ( > 1

z ( -l) 2
0 2z ( -I) ( 3-2) 2 'A

- (6 (- +p, ( -2) +1) 3Z ' i ( 2) (,, -1) 3

Other central moments may be found in a similar manner, by

expanding to a function of the moments about the origin and

using (A.4.2). These three are all that are used in the

approximations below.

Since the moments of the generalized beta distribution

are not algebraically calculable, we now present some

approximations. The approximations are based on the trans-

formations from the generalized F distribution to the

generalized beta distribution and Taylor's series expansion
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of it.

Suppose we have a random variate Z that has d

generalized F distribution. Then the moments ot a L ndom

variate Y = ¢(Z) may be found if the transformdtion (.)

has derivatives to all degrees at least in a interval about

some point used in the expansion, in this case the mean of

Z, WZ

By Taylor's series expansion,

(A. 4. 4) y [zl - il I + p' [h I (Z )+2
Z Z Z

Hence, the mean of Y is given by, approximately,

1 2 1(A.4. 5) frY -y p[ zJ ¢' [ z '  $ ' : ]

Similarly,

S 2 2 ,, , ,
(A. 4.6) V[Y ] - ( 1)2 ZZ i; j Z 4

I 'S , I '''[ : 1 2 'T 26-" ' z z z "7 - q '

3 3 1+3I

(A.4.7) E [(y-E[y]) I (W [ P ]) + -( , 3,
zz z

+ ,,,

3 2 4
-) ( [a z
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3 22 ]o
z z z z

+ C, H z ) " 2 w z 4 Yz

2 2 2

- :(p. [)z]( * ' 't [ z1 ) z yz

z z z z

1P , z , z , .. 2

In the above three equations,

(A.4. 8) p[z = zl+ z

(I + z)- 2

V'' [z] = -2(1 + z)-3

' z] = 6(1 + z)-4

and the moments of the random variate Z are taken from

equations (A.4.3).
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Section 5. Conclusion

In this appendix, we have presented two piobatility

distributions that have proven useful in utility todellinj.

Both multivariate and univariate forms havc been dvelo ud.

The convenient property of reproduction ot distriLutloijal

form has been demonstrated for marginal distiiLutiern:.

Several conditional distributions have been derived.

It has been shown that these two distributions, called

the generalized beta distribution and the generalized F

distribution, reduce to the standard beta and F

distributions, respectively, in special cases. It has also

been shown that the two generalized distributions have a

relationship similar to that between the standard beta and F

distributions. Finally, the moments of the generalized F

distribution have been presented, and approximations for the

first three central moments of the generalized beta

distribution have been derived.
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Akpendix B. Derivatives

Section 1. Introduction

In this appendix, we present the derivatives of the

three probability distributions used in this paper to model

multiattribute utility functions. Thse derivatives are

necessary for the non-linear least-squares algorithm used to

estimate the parameters of the model selected. The model!:

that are available are the cumulative distribution functions

of the multivariate normal, the Dirichlet, and the mul-

tivariate jeneralized beta distributions. Since only the

univariate conditional distributions are required for the

estimation procedure, the derivatives presented here are of

the relevant cumulative univariate conditional distribution

tunctions.

Because the derivatives are very complex, and becau:;e

we are implementing three models of utilities in thr e

metrics, the derivatives are presented in piece!;. In S(-c-

tion 2, we present the dcrivatives of the onjective func-

tion, that which we strive to minimize, with respect to an

arbitrary estimate of the indifference probability. As we



167

are implementing three metrics in the model estimation

phase, the derivatives of these transformations are relevant

as well. Thus, the derivatives of the cbjective tunction

are presented for each of the three metric: the

indifference probability metric, the logodds metric, and the

arcsine-square-root metric. The estimate of the

indifference probability is a function of the conditional

utility function. The derivatives of the estimate of the

indifference probability with respect to an arbitrary

utility function is also presented here.

The conditional utility functions are modelled by three

cumulative probability distribution functions: the normal,

the beta, and the generalized beta. In Sections 3, 4, and

5, the derivatives of the utility functicn with respect to

its parameters are presented for the three models, respec-

tively. Each section is divided into two parts: the fiLst

part gives the derivatives of the utility function with

respect to the conditional parameters; and the second part

gives the derivatives of the conditional parameters with

respect to the unconditional parameters (the parameters of

the multivariate distribution that is the model of the mul-

tiattribute utility function).
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Section 2. Estimation Metric Derivatives

Indifference Probability metric:

uk pijk - ijk

7 F F(p) - pWijk - ijP ~ Pj
JTS Iikik ( S P j/

.2 F (_) 2

~i jk ik s' i jk

Logodds Metric:

iE \"ijkI ijk

F~ L () = j k k 0 ('Pk ij (k]

F (p)k2 1Pj k i ij

L \1k [lg(-ijk 'Pijk~ j

7 41 
k,

r 1o3- i k P-o itik 1

ijk Iijk) ij ik



Arcs iri Square R~oot Metric:

FA(P) a j~rc 1n arcj) r sin %p]

FA~~p) = ijkLron ik (-pl k)~ s~

F) ((P) Ir

ij ~ikI

+ (-ircs n j7.7)-arcsin,,D p 3
* ( 1 \ 2

(J I k k)



Indifference Probability -'stimate:

Pi~ .) K-uk

__u~ 0( )- - 0-u ,, ) u
ks

2.

s k s

1 2 ,

S1 2 __ __

- 71 _____________)____ ______ -k

S t s

~~U( U~1 ) ~ u

+2 (--. _ u(

* ( u( _u u(t



Section 3. Normal Distributioii

u~u = u

J t~S '

s t s 's

+~ S.
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O oherwse S O ohurw~-J



Conrlit.Lonal Paramueters:;

- s s :;1(iiy I-]
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Section 4. Standard Beta Distribution
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Section 5. Generalized Beta Distribution
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Marginal Parameters: , : ai '+ = x Qo+ i.
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